Search results for

Big Data

BeautifulSoup
Définitions

Beautiful Soup : tout savoir sur la bibliothèque Python de Data Scraping

Le web est une véritable mine de données informatiques. Ces données peuvent être exploitées, analysées pour une infinité de cas d’usage et d’applications. On peut les utiliser pour nourrir des systèmes de Machine Learning, d’intelligence artificielle, ou tout simplement pour mettre en lumière des tendances et des phénomènes.

S’il est possible de collecter ces données manuellement afin de constituer de vastes datasets, cette tâche représente un travail de titan. Afin de l’automatiser, on utilise le Web Scraping.

Qu’est-ce que le Web Scraping ?

Le Web Scraping est un processus qui consiste à assembler des informations en provenance d’internet, à l’aide de divers outils et frameworks. Cette définition est très large, et même le fait de copier / coller les paroles d’une chanson peut être considéré comme une forme de Web Scraping.

Toutefois, le terme de Web Scraping désigne généralement un processus impliquant l’automatisation. Les volumes massifs de données sont collectés automatiquement, afin de constituer de vastes datasets.

Certains sites web s’opposent à la collecte de leurs données par des scrapers automatiques. En règle générale, le scraping à des fins éducatives est plus toléré que pour un usage commercial. Il est important de consulter les conditions d’utilisation d’un site avant d’initier un projet.

À quoi sert le Web Scraping ?

Le Web Scraping permet d’agréger des informations plus rapidement qu’avec une collecte manuelle. Il n’est plus nécessaire de passer de longues heures à cliquer, à dérouler l’écran ou à rechercher les données.

Cette méthode se révèle particulièrement utile pour amasser de très larges volumes de données en provenance de sites web régulièrement mis à jour avec du nouveau contenu. Le scraping manuel est une tâche chronophage et rébarbative.

À l’échelle individuelle, le Web Scraping peut se révéler utile pour automatiser certaines tâches. Par exemple, un demandeur d’emploi peut utiliser Python pour automatiser ses recherches d’offres. Quelques lignes de code permettent d’enregistrer automatiquement les nouvelles annonces publiées sur des plateformes comme Indeed ou Monster, afin de ne plus avoir à visiter ces sites web quotidiennement.

web-scraping-beautiful-soup

Le Web Scraping peut aussi être utilisé pour surveiller des changements de prix, comparer des prix, ou surveiller la concurrence en collectant des sites web en provenance de leurs sites web. Les possibilités sont nombreuses et diverses.

Toutefois, cette méthode se révèle surtout pertinente pour les projets Big Data nécessitant d’immenses volumes de données. Par exemple, l’entreprise ClearView AI a utilisé le Web Scraping sur les réseaux sociaux afin de constituer une immense base de données de photos de profils pour son logiciel de reconnaissance faciale.

Le Web Scraping est presque aussi vieux qu’internet. Alors que le World Wide Web fut lancé en 1989, le World Wide Web Wanderer a été créé quatre ans plus tard. Il s’agit du premier robot web créé par Matthew Gray du MIT. Son objectif était de mesurer la taille du WWW.

Les défis du Web Scraping

Depuis sa création, internet a beaucoup évolué. On y trouve une large variété de types et formats de données, et le web scraping comporte donc plusieurs difficultés.

Le premier défi à relever est celui de la variété. Chaque site web est différent et unique, et nécessite donc un traitement spécifique pour l’extraction d’informations pertinentes.

En outre, les sites web évoluent constamment. Un script de Web Scraping peut donc fonctionner parfaitement la première fois, mais se heurter ensuite à des dysfonctionnements en cas de mise à jour.

Dès que la structure d’un site change, le scraper peut ne plus être capable de naviguer la ” sitemap ” correctement ou de trouver des informations pertinentes. Heureusement, la plupart des changements apportés aux sites web sont minimes et incrémentaux, et un scraper peut donc être mis à jour avec de simples ajustements.

Néanmoins, face à la nature dynamique d’internet, les scrapers nécessitent généralement une maintenance constante. Il est possible d’utiliser l’intégration continue pour lancer périodiquement des tests de scraping et s’assurer que les scripts fonctionnent correctement.

Les APIs en guise d’alternative au Web Scraping

Certains sites web proposent des APIs (interface de programmation d’application) permettant d’accéder à leurs données de manière prédéfinie. Ces interfaces permettent d’accéder aux données directement en utilisant des formats comme JSON et XML, plutôt que de s’en remettre au parsing de HTML.

L’utilisation d’une API est en général un processus plus stable que l’agrégation de données via le Web Scraping. Pour cause, les développeurs créent des APIs conçues pour être consommées par des programmes plutôt que par des yeux humains.

API-beautiful-soup

La présentation front-end d’une site web peut souvent changer, mais un tel changement dans le design d’un site web n’affecte pas la structure de son API. Cette structure est généralement plutôt permanente, ce qui en fait une source plus fiable de données.

Néanmoins, les APIs aussi peuvent changer. Les défis liés à la variété et à la durabilité s’appliquent donc aussi bien aux APIs qu’aux sites web. Il est également plus difficile d’inspecter la structure d’une API par soi-même si la documentation fournie n’est pas suffisamment complète.

Qu’est-ce que Beautiful Soup ?

Beautiful Soup est une bibliothèque Python utilisée pour le Web Scraping. Elle permet d’extraire des données en provenance de fichiers XML ou HTML. Cette bibliothèque crée un arbre de parsing à partir du code source de la page, pouvant être utilisé pour extraire les données de manière hiérarchique et lisible.

À l’origine, Beautiful Soup fut introduite en mai 2006 par Leonard Richardson qui continue à contribuer au projet. En outre, le projet est soutenu par Tidelift et son outil de maintenance open-source proposé par abonnement payant.

En plus de ses hautes performances, Beautiful Soup apporte plusieurs avantages. Cet outil permet de parcourir les pages de la même manière qu’un navigateur, et enjolive le code source.

Comment apprendre à utiliser Beautiful Soup et Python ?

Afin d’apprendre à utiliser Beautiful Soup, vous pouvez choisir DataScientest. Leur formation Data Analyst commence avec un module dédié à la programmation en Python, et comporte un module dédié à l’extraction de données textes et au Web Scraping.

Les autres modules de ce cursus couvrent la Dataviz, le Machine Learning, les bases de données Big Data et la Business Intelligence. À l’issue du programme, vous aurez toutes les compétences requises pour exercer le métier de Data Analyst.

Toutes nos formations adoptent une approche Blended Learning combinant coaching individuel sur notre plateforme en ligne et Masterclass. Le programme peut être complété en Formation Continue ou en mode BootCamp intensif.

À la fin du cursus, vous recevrez un certificat délivré par l’Université Paris la Sorbonne dans le cadre de notre partenariat. Parmi les alumnis, 80% ont trouvé un emploi immédiatement après la formation.

Nos programmes sont éligibles au Compte Personnel de Formation pour le financement. N’attendez plus et découvrez la formation Data Analyst de DataScientest !

Vous savez tout sur Beautiful Soup. Découvrez notre dossier complet sur le langage Python, et notre dossier sur le métier de Data Analyst.

Code sur écran d'ordinateur
Définitions

Qu’est-ce que la Data Science ? À quoi sert-elle ? Pourquoi est-elle importante aujourd’hui ?

Il y a beaucoup de discussions sur ce qu’est la Data Science ou Science des données. Mais, nous pouvons la résumer par la phrase suivante : « La Data Science est la discipline du 21e siècle qui convertit les données en connaissances utiles ».

La Data Science combine plusieurs domaines, dont les statistiques, les méthodes scientifiques (scientific methods) et l’analyse des données (analyzing data). Elle permet d’extraire de la valeur dans les données, de la collecte de celles-ci (Data Collections) à l’analyse prédictive (Predictive Analytics) en passant par la présentation des résultats (Data Visualization). Le praticien de la Science des données est le Data Scientist qui travaille de près avec d’autres experts du Big Data tels que le Data Analyst et le Data Engineer (Data Science Team).

Qu’est-ce que la Data Science ?

En termes simples, la Science des données consiste à appliquer l’analyse prédictive pour tirer le meilleur parti des informations d’une entreprise. Il ne s’agit pas d’un produit, mais d’un ensemble d’outils (parfois Open source) et de techniques interdisciplinaires intégrant les statistiques (statistical analysis et statistical modeling), l’informatique (computer science) et les technologies de pointe (Artificial Intelligence AI et Machine Learning models) qui aident le Data Scientist à transformer les données en informations stratégiques (actionable insights).

La plupart des entreprises sont aujourd’hui submergées de données et ne les utilisent probablement pas à leur plein potentiel. C’est là qu’intervient le Data Scientist qui met à leur service ses compétences uniques en matière de Science des données pour les aider à transformer les informations en données stratégiques significatives et en véritable avantage concurrentiel (Data Driven Marketing).

En appliquant la Data Science, une organisation peut prendre des décisions en toute confiance et agir en conséquence, car elle travaille avec des faits et la méthode scientifique, plutôt qu’avec des intuitions et des suppositions.

Que font exactement les Data Scientists ?

Statistiques sur papier

Les Data Scientists sont des experts dans trois groupes de disciplines :

          Les statistiques et les mathématiques appliquées

          L’informatique

          L’expertise commerciale

Si les Scientifiques des données peuvent avoir une expertise en physique, en ingénierie, en mathématiques et dans d’autres domaines techniques ou scientifiques, ils doivent également comprendre les objectifs stratégiques de l’entreprise pour laquelle ils travaillent afin d’offrir de réels avantages commerciaux.

Le travail quotidien d’un Data Scientist consiste à :

          Définir un problème ou une opportunité commerciale

          Gérer et à analyser toutes les données pertinentes pour le problème

          Construire et tester des modèles pour fournir des aperçus et des prédictions

          Présenter les résultats aux parties prenantes de l’entreprise

          Écrire du code informatique pour exécuter la solution choisie

Lorsqu’il fait du codage, il applique ses connaissances d’une combinaison de langages utilisés pour la gestion des données et l’analyse prédictive tels que Python, R, SAS et SQL/PostgreSQL.

Enfin, le Data Scientist est également chargé d’analyser et de communiquer les résultats commerciaux réels.

En raison du grand nombre de compétences spécifiques impliquées, les scientifiques de données qualifiés sont difficiles à identifier et à recruter. En outre, leur maintien au sein d’une équipe interne est coûteux pour une organisation.

Pourquoi la Data Science est-elle soudainement si importante ?

La théorie mathématique et statistique qui sous-tend la Data Science est importante depuis des décennies. Mais, les tendances technologiques récentes ont permis la mise en œuvre industrielle de ce qui n’était auparavant que de la théorie. Ces tendances font naître un nouveau niveau de demande pour la Science des données et un niveau d’excitation sans précédent quant à ce qu’elle peut accomplir :

          L’essor du Big Data et de l’Internet des objets (IoT)

La transformation numérique du monde des affaires a donné lieu à une énorme quantité de données (amounts of data) et différents jeux de données (data sets) sur les clients, les concurrents, les tendances du marché et d’autres facteurs clés. Comme ces données proviennent de nombreuses sources et peuvent être non structurées, leur gestion est un défi. Il est difficile, voire impossible pour les groupes internes (analystes d’entreprise traditionnels et équipes informatiques travaillant avec les systèmes existants) de gérer et d’appliquer cette technologie par eux-mêmes.

          La nouvelle accessibilité de l’Intelligence artificielle (IA)

L’Artificial Intelligence (Intelligence artificielle) et la Machine Learning (apprentissage automatique) qui relevaient autrefois de la science-fiction sont désormais monnaie courante et arrivent juste à temps pour relever le défi du Big Data. Le volume, la variété et la vitesse des données ayant augmenté de manière exponentielle, la capacité à détecter des modèles et à faire des prédictions dépasse la capacité de la cognition humaine et des techniques statistiques traditionnelles. Aujourd’hui, l’Intelligence artificielle et l’apprentissage automatique sont nécessaires pour effectuer des tâches robustes de classification, d’analyse et de prédiction des données.

          Les gains énormes en puissance de calcul

La Data Science ne serait pas possible sans les récentes améliorations majeures de la puissance de calcul. Une percée cruciale a été de découvrir que les processeurs informatiques conçus pour restituer des images dans les jeux vidéos seraient également adaptés aux applications d’apprentissage automatique et d’Intelligence artificielle. Ces puces informatiques avancées sont capables de gérer des algorithmes mathématiques et statistiques extrêmement sophistiqués et fournissent des résultats rapides même pour les défis les plus complexes, ce qui les rend idéales pour les applications de science des données.

          Nouvelles techniques de stockage des données, y compris l’informatique dématérialisée

La Data Science dépend d’une capacité accrue à stocker des données de toutes sortes à un coût raisonnable. Les entreprises peuvent désormais stocker raisonnablement des pétaoctets (ou des millions de gigaoctets) de données, qu’elles soient internes ou externes, structurées ou non structurées, grâce à une combinaison hybride de stockage sur site et en nuage.

          Intégration de systèmes

La Data Science met en relation toutes les parties de votre organisation. Une intégration étroite et rapide des systèmes est donc essentielle. Les technologies et systèmes conçus pour déplacer les données en temps réel doivent s’intégrer de manière transparente aux capacités de modélisation automatisée qui exploitent les algorithmes de Machine Learning pour prédire un résultat. Les résultats doivent ensuite être communiqués aux applications en contact avec la clientèle, avec peu ou pas de latence, afin d’en tirer un avantage.

Quels avantages une entreprise peut-elle tirer de la Data Science ?

Réunion business

La Data Science peut offrir un large éventail de résultats financiers et d’avantages stratégiques, en fonction du type d’entreprise, de ses défis spécifiques et de ses objectifs stratégiques.

Par exemple, une société de services publics pourrait optimiser un réseau intelligent pour réduire la consommation d’énergie en s’appuyant sur des modèles d’utilisation et de coûts en temps réel. Un détaillant pourrait appliquer la Science des données aux informations du point de vente pour prédire les achats futurs et sélectionner des produits personnalisés.

Les constructeurs automobiles utilisent activement la Data Science pour recueillir des informations sur la conduite dans le monde réel et développer des systèmes autonomes grâce à la Machine Learning. Les fabricants industriels utilisent la Science des données pour réduire les déchets et augmenter le temps de fonctionnement des équipements.

Dans l’ensemble, la Data Science et l’Intelligence artificielle sont à l’origine des avancées en matière d’analyse de texte, de reconnaissance d’images et de traitement du langage naturel qui stimulent les innovations dans tous les secteurs.

La Science des données peut améliorer de manière significative les performances dans presque tous les domaines d’une entreprise de ces manières, entre autres :

          Optimisation de la chaîne d’approvisionnement

          Augmentation de la rétention des employés

          Compréhension et satisfaction des besoins des clients

          Prévision avec précision des paramètres commerciaux

          Suivi et amélioration de la conception et des performances des produits.

La question n’est pas de savoir ce que la Data Science peut faire. Une question plus juste serait de savoir ce qu’il ne peut pas faire. Une entreprise dispose déjà d’énormes volumes d’informations stockées ainsi que d’un accès à des flux de données externes essentiels. La Science des données peut tirer parti de toutes ces informations pour améliorer pratiquement tous les aspects des performances d’une organisation, y compris ses résultats financiers à long terme.

Quel est l’avenir de la Data Science ?

La Data Science est de plus en plus automatisée et le rythme de l’automatisation va sûrement se poursuivre.

Historiquement, les statisticiens devaient concevoir et ajuster les modèles statistiques manuellement sur une longue période, en utilisant une combinaison d’expertise statistique et de créativité humaine. Mais aujourd’hui, alors que les volumes de données et la complexité des problèmes d’entreprise augmentent, ce type de tâche est si complexe qu’il doit être traité par l’Intelligence artificielle, l’apprentissage automatique et l’automatisation. Cette tendance se poursuivra à mesure que le Big Data prendra de l’ampleur.

L’Intelligence artificielle et l’apprentissage automatique sont souvent associés à l’élimination des travailleurs humains. Mais, ils ne font en réalité qu’accroître l’essor des Citizen Data Scientists, ces professionnels de la Data Science sans formation formelle en mathématiques et statistiques.

En conclusion, rien n’indique que l’automatisation remplacera les spécialistes des données, les ingénieurs de données et les professionnels des DataOps qualifiés. Il faut autant de créativité humaine que possible à différentes étapes pour tirer parti de toute la puissance de l’automatisation et de l’Intelligence artificielle.

Image ordinateur sur canapé
Conseils

Devenir Data Scientist freelance

Depuis ces dernières années, les Data Scientist sont très recherchés par les entreprises. Ces professionnels travaillent avec d’importantes quantités de données ou Big Data. Leur rôle est de faire un croisement entre les données, les traiter et en déduire des conclusions qui permettent aux dirigeants de l’entreprise de prendre des décisions stratégiques en adéquation avec leurs objectifs.

En ce sens, un Data Scientist est un expert indispensable pour toute organisation qui souhaite se développer en anticipant les choix de ses clients grâce à une analyse des données les concernant.

Aujourd’hui, il s’agit d’un des métiers du Big Data (Data Analyst, Data Engineer…), dont la rémunération est l’une des plus élevées. Par considération de l’engouement des entreprises pour les compétences et l’expérience en Data Science, beaucoup se ruent pour décrocher un poste. Cependant, certains trouvent l’idée de devenir un Scientifique des données en freelance plus intéressant.

Le Data Scientist indépendant

Le Data Scientist connaît par cœur ce qu’est de gérer et d’analyser d’importantes quantités de données dans le genre du Big Data. Sa principale tâche est d’identifier des éléments grâce à l’analyse de données, et surtout le traitement de données qu’il a préalablement effectué pour la mise en place d’une stratégie apportant une solution à un problème.

Un freelance Data Scientist est donc un professionnel de la science des données en mission freelance. Tout comme un Scientifique des données en CDI dans une entreprise, il connaît tout ce qu’il faut faire avec le Big Data. Il anticipe les besoins de l’entreprise pour affronter ceux de ses clients.

Pour ce faire, il va :

          Déterminer les besoins de l’entreprise après exploration, analyse et traitement des données

          Conseiller les parties prenantes et les équipes par rapport à ces besoins

          Construire un modèle statistique

          Mettre au point des outils d’analyse pour la collecte de données

          Référencer et structurer les sources de données

          Structurer et faire la synthèse de ces sources

          Tirer parti des informations tirées des résultats

          Construire des modèles prédictifs

Compétences pour devenir Data Scientist freelance

Abaque multicolor

Pour devenir Data Scientist indépendant, il faut bien évidemment avoir les compétences d’un Scientifique de données, à savoir :

  •         Fondamentaux de la science des données
  •         Statistiques
  •         Connaissances en programmation (Python, R, SQL, Scala)
  •         Manipulation et analyse des données
  •         Visualisation de données
  •         Apprentissage automatique (Machine Learning)
  •         Apprentissage en profondeur (Deep Learning)
  •         Big Data
  •         Génie logiciel
  •         Déploiement du modèle
  •         Compétences en communication
  •         Compétences en narration
  •         Pensée structurée
  •         Curiosité
  •         Anglais

Devenir un Data Scientist, que ce soit en interne (dans une entreprise) ou en indépendant, il est nécessaire de suivre une formation spécifique à la Data Science avec ou sans aucune base sur les mathématiques et les statistiques.

En effet, la Science des données nécessite des connaissances en mathématiques, en statistique et en donnée informatique, et d’une certaine manière, en marketing. Être un Data Scientist, c’est devenir un expert dans la Data Science capable d’analyser les données dans le respect de la politique de confidentialité. Il en tire ensuite des informations précieuses permettant d’apporter des réponses aux problèmes actuels et des solutions aux besoins futurs.

Conditions pour devenir Data Scientist indépendant

Une fois que la certitude de pouvoir se lancer en freelance et d’assumer une variété de tâches est présente, il est possible de commencer à penser à passer dans l’environnement indépendant. Voici quelques éléments indispensables pour se lancer :

Expérience dans une variété de missions

Cette expérience peut résulter des études, d’une carrière en entreprise ou même d’un bénévolat. Pour un débutant, l’idéal est de proposer un service de consultant dans une entreprise locale pour acquérir de l’expérience tout en explorant ce qu’il faut pour être un freelance. Mais, il est essentiel d’avoir une expérience bien enrichie pour démontrer qu’une entreprise est très intéressée (ex : chef de projet data).

Portfolio des réalisations

Il est essentiel d’avoir un portfolio qui démontre le niveau de compétence. Cela devrait inclure plusieurs types de projets différents qui mettent en valeur la capacité à effectuer plusieurs types de travail tels que le développement et le test de diverses hypothèses, le nettoyage et l’analyse des données et l’explication de la valeur des résultats finaux.

Support du portfolio

Étant donné que l’un des avantages d’être indépendant est la possibilité de travailler à distance, il y a de fortes chances de décrocher un emploi à distance. Cela signifie que le premier contact avec des clients potentiels sera probablement en ligne. Un bon moyen de présenter les travaux déjà réalisés est de créer un site Web personnel afin de rendre le portfolio facile à parcourir. Il est important d’afficher clairement les moyens de contact.

S’inscrire sur une plateforme de recrutement en ligne

Un Data Scientist indépendant utilise généralement une plateforme en ligne ou un annuaire indépendant pour trouver du travail. Il y en a beaucoup où les entreprises publient des offres d’emploi et les freelances se vendent, ou où les entreprises contactent des freelances avec un projet data en tête.

Avoir de l’initiative pour trouver du travail

Bien que les plateformes de recrutement offrent la possibilité de soumissionner pour des emplois, un Data Scientist en freelance peut également sortir des sentiers battus dans la recherche d’un travail précieux et agréable. Il faut ne pas parfois chercher loin et penser « local » comme des entrepreneurs ou des start-ups qui pourraient bénéficier de compétences en Data Science.

Être leader dans son domaine

Au fur et à mesure que la situation d’indépendant prend de l’ampleur, il est important de mettre en valeur les connaissances et les compétences techniques dans le domaine de la Science des données. Par exemple, il est très vendeur d’être actif sur les forums en ligne pour les Data Scientists ou d’écrire des blogs ou des articles de leadership éclairé pour le site Web personnel. Les employeurs prendront note de ses connaissances, de cette perspicacité et de cette volonté de se démarquer lorsqu’ils recherchent un Data Scientist indépendant.

Avoir la volonté d’apprendre continuellement

Être dans un domaine nouveau et passionnant signifie qu’il faut être ouvert à tous et apprendre davantage sur la Data Science pour répondre aux besoins des futurs clients et plus encore. En ce sens, il ne faut pas hésiter à s’accorder du temps et les ressources nécessaires pour le perfectionnement professionnel comme la formation technique.

Pourquoi devenir Data Scientist indépendant ?

Statistiques sur ordinateur

Maintenant que certaines des étapes clés à suivre sont connues, il est possible de se lancer dans une carrière de Data Scientist indépendant. Cependant, beaucoup se demandent pourquoi devenir un Scientifique des données en freelance.

Après tout, partir seul peut être un parcours intimidant. Il peut être effrayant de se demander où trouver du travail et si on gagne assez d’argent pour que cela en vaille la peine.

Si la présence d’un employeur, de collaborateurs et d’un lieu de travail n’est pas si importante, le statut d’indépendant est intéressant pour un Data Scientist. Voici quelques bonnes raisons de se lancer dans une carrière de freelance.

La place du marché

Le marché du travail indépendant en général a augmenté pour diverses raisons. Les employeurs sont de plus en plus à l’aise avec une main-d’œuvre distante et sont plus ouverts à l’embauche d’entrepreneurs plutôt que d’employés. Le marché des Data Scientists a également augmenté. Les entreprises comprennent de plus en plus la valeur de la Science des données et souhaitent que les efforts créatifs les aident à fournir des analyses et à traduire les informations en idées.

La flexibilité

En tant qu’indépendant, un Data Scientist travaille selon un horaire de travail flexible. Parfois, il doit travailler le week-end pour accélérer un projet. Mais parfois, il peut prendre un après-midi pour se reposer ou faire autre chose. C’est un réel avantage pour beaucoup. La flexibilité de travailler à distance, de n’importe où, est aussi un autre avantage d’être en freelance.

La diversité du travail

Il existe des profils de personnes qui aiment travailler sur une variété de projets pour une variété de clients. Une carrière de Data Scientist indépendant peut être dans ce cas le choix idéal.

Conseils

La data science : un booster du conseil en stratégie

La transformation digitale des entreprises est en marche ! Ce terme qui englobe tous les changements liés à l’intégration de nouvelles technologies dans la société contient le Big Data comme l’un de ses piliers les plus solides. Pour les entreprises, l’explosion des « grosses données » est au cœur des problématiques actuelles qu’elles doivent affronter. Cela nécessite la création de moyens efficaces pour les recevoir et les utiliser au mieux, permise par des professionnels aguerris des Data Sciences. 

Les cabinets de conseil en stratégie sont des acteurs majeurs dans cette digitalisation de l’entreprise. Ils accompagnent les autres entreprises dans leur stratégie de transformation digitale, soit en tant que cabinets spécialisés, soit pour les cabinets généralistes en intégrant un segment dédié à leur offre d’expertise. Mais ils sont eux-mêmes sujets de cette transformation digitale et doivent intégrer de nouvelles compétences à leur cœur de métiers pour des propositions à plus forte valeur ajoutée.   

Pourquoi intégrer les Data Sciences au conseil en stratégie ? 

Aujourd’hui, la Data Science, ou science des données est utilisée par les entreprises comme outil d’analyse pour aider à la décision. Et plus il y a de données, plus le recours aux spécialistes de la data science est indispensable. 

Le cas des cabinets de conseils en stratégie en est le parfait exemple. Ces derniers ont comme mission de répondre à une problématique précise pour le compte de leurs clients. L’expertise attendue d’eux repose sur la conduite de recherches et d’analyses stratégiques à partir de données fournies directement par les clients ou de données externes. Opérant sur une grande variété de secteurs, ils stockent donc un nombre de données très important. 

Mais si les data sont historiquement au cœur du métier de consultant, les temps changent et les technologies avec. Pour fournir la meilleure analyse possible et garder un avantage concurrentiel, les cabinets se doivent d’évoluer au rythme de ces avancées. L’amélioration du CRM grâce à la personnalisation de la relation client, l’optimisation et la prédiction des coûts, la sécurisation et la détection de fraude, la vérification de l’authenticité de produits… sont tant d’exemples permis aujourd’hui par des méthodes et algorithmes très poussés au centre des outils utilisés dans les Data Sciences. 

L’utilisation des Data Sciences intervient à chaque niveau de la chaine de valeur ; du début de la réflexion à la solution fournie au client en passant par le suivi. La conjoncture des 3 V qui définissent les Big Data – Volume, Vélocité, Variété – permet de mieux répondre aux due diligences et en un temps plus restreint.

C’est dans cette optique que le BCG a vu naître sa nouvelle entité dédiée à la Data Science : BCG Gamma. Avec Cedric Villani (médaille Fields 2010) comme conseiller scientifique, et l’INRIA (l’institut national de recherche en sciences du numérique) comme partenaire, le message porté par cette initiative est clair : mêler la recherche au monde de l’entreprise pour améliorer les performances. L’équipe est composée de 250 personnes : des experts scientifiques maitrisant les techniques mathématiques et statistiques liées à l’intelligence artificielle, au machine et deep learning, mais également des consultants experts dans les secteurs conseillés par le cabinet, concentrés sur l’aspect analytique des données.  

Les profils des data-consultants 

S’ils étaient absents du monde du conseil il y a encore 5 ans, les Data Sciences y sont aujourd’hui indispensables. Le recours à cette nouvelle science ne se fait plus seulement à travers l’utilisation ponctuelle de l’expertise d’acteurs de la tech dans le cadre de partenariats. Aujourd’hui, les Data Scientists arrivent au sein même des cabinets de conseils. Et demain, ils se mêleront à part entière aux consultants.

Chez ces férus d’informatique et de nouvelles technologies, les nouvelles façons de s’intégrer aux grands cabinets de conseil sont multiples. Toutefois, deux grandes tendances dominent : (1) être une fonction support (2) être un consultant à part entière.

L’équipe BCG Gamma réunit des doubles profils « consultants-data scientists » autour des problématiques classiques du grand groupe de conseil dans les différents secteurs où il opère. Ils sont pleinement intégrés au groupe et ont le même objectif final que tout consultant : conseiller le client en lui apportant une expertise poussée. Mais le moyen pour y parvenir diffère : « Là où un consultant utilisera Excel pour créer un modèle d’analyse, nous avons recours à des algorithmes pour modéliser des volumes de données plus complexes » (Thomas Lewiner, BCG Gamma). Aussi, à la différence du consultant type, les consultants « geeks » n’ont pas suivi un parcours en école de commerce ou d’ingénieur, mais des formations dédiées aux data sciences, en informatique, allant parfois jusqu’au doctorat (46%). Ces consultants s’inscrivent pleinement dans la transformation digitale des entreprises par leur utilisation des Data Sciences qui accélèrent et optimisent l’arrivée vers le résultat voulu.  

Dans d’autres cabinets, les data scientists ne sont pas consultants mais forment une équipe bien distincte dont la vocation unique est de gérer les données. 

C’est par exemple le cas de PMP ou d’EY qui se sont dotés en 2016 de leurs « Data Lab » ou « EY Digital Lab », choisissant de s’inscrire pleinement dans l’ère de la transformation digitale sans dénaturer la fonction de consultant.  Ces deux laboratoires de la donnée ont comme rôle d’assurer une fonction support pour les différentes entités des groupes. Les talents de ces laboratoires s’occupent de traiter et gérer les données avant que les consultants ne les analysent pour en fournir une interprétation. 

L’enjeu est de taille pour ces data scientists, car s’ils exercent leur métier sans se confondre aux consultants, ils doivent bien s’adapter à ces derniers. Pour générer un gain de temps grâce au Big Data, ils doivent donc parvenir à vulgariser leur langage afin qu’il soit exploitable au maximum et parfaitement intégré dans la chaine de valeur.

formation-data-engineer.jpg
Formations

Qu’attendre d’une formation data engineer ?

Le data engineer est l’une des professions les plus demandées ces dernières années. Connaissant une grande croissance, il s’agit de l’une des professions les plus rémunératrices au même titre que le métier de data scientist (data science, Machine Learning…). L’augmentation massive des données générées et des technologies qui ont émergé autour d’elle en sont les principales causes. Alors, que ce soit via une formation data engineer à distance ou dans une école d’informatique, qu’acquiert-on en apprenant à devenir un expert du data engineering ?

Des notions de base

Parmi les notions de base que les futurs data engineers devraient acquérir se trouve Linux. Ce système d’exploitation est le plus utilisé dans les déploiements Cloud et Big Data. Un data engineer doit au moins être à l’aise avec ces technologies. Ainsi, il peut éditer facilement des fichiers, exécuter des commandes et naviguer dans le système.

Il doit aussi maîtriser un langage de programmation comme Python. Ce point inclut la possibilité d’interagir avec les API et d’autres sources de données de manière simple et directe.

Par définition, le Big Data se déroule généralement dans des systèmes distribués. Ces derniers font partie des connaissances fondamentales qu’un bon ingénieur de données doit acquérir. Ces systèmes présentent de nombreuses particularités concernant la réplication des données, la cohérence, la tolérance aux pannes, le partitionnement et la concurrence. À ce stade, la formation comprend des technologies telles que HDFS, Hadoop ou Spark.

hadoop-data-engineer

Des compétences de base

Technologies et services Cloud

La demande pour ces technologies ne cesse de croître. Ainsi, se lancer dans des projets de migration vers le Cloud est devenu un impératif pour les entreprises. Un bon data engineer doit connaître et avoir de l’expérience dans l’utilisation des services Cloud, leurs avantages, leurs inconvénients et leur application dans les projets Big Data. Il doit au moins être à l’aise avec une plate-forme comme Microsoft Azure ou AWS. De plus, il doit connaître les bonnes pratiques en matière de sécurité et de virtualisation des données. Il ne faut pas oublier que ces technologies sont là pour durer. Par conséquent, suivre une formation qui les inclut dans le programme est toujours une bonne idée.

Bases de données

Les data engineers doivent connaître le fonctionnement et l’utilisation des bases de données, les différences entre les bases de données relationnelles et NoSQL. Le langage de base pour interagir avec ces bases de données est SQL. En ce sens, un futur data engineer doit se familiariser avec les requêtes d’écriture et de lecture ainsi que la manipulation de données. En outre, il doit comprendre la différence entre les types de bases de données NoSQL et les cas d’utilisation pour chacun d’eux.

Pipelines de données

L’un des principaux rôles des ingénieurs de données est de créer des pipelines de données. Pour ce faire, il utilise des technologies ETL (Extraction-Transform-Load) et des cadres d’orchestration. Le data engineer est formé pour connaître ou se sentir à l’aise avec certaines des plus connues telles que Apache NiFi ou Airflow.

processus-etl-data-enginering

Des compétences avancées

Il existe d’autres compétences et connaissances acquises lors d’une formation data engineer en plus des compétences de base. Elles ajoutent une grande valeur aux compétences professionnelles.

  • Systèmes de mise en file d’attente de messagerie comme Kafka ou RabbitMQ : les data engineers doivent comprendre les avantages du déploiement de ces technologies et leur architecture.
  • Langage de programmation orienté objet comme Python : ces langages sont très utiles dans le secteur du Big Data. La plupart des frameworks et outils open source sont développés avec des langages JVM. Ils seront particulièrement utiles pour développer des intégrations de technologies, résoudre les erreurs et comprendre les journaux.
  • Traitement de flux avec des outils de traitement de streaming comme Flink, Kafka Streams ou Spark Streaming : une formation data engineer doit inclure l’apprentissage de ces outils. Les entreprises doivent aujourd’hui mettre en place des projets avec des exigences en temps, avec de faibles latences de traitement. En ce sens, la formation à ces technologies est très intéressante avec de nombreux cas d’utilisation à exploiter.
data-marketing
Définitions

Qu’est-ce que le data marketing ? Quelle est son importance ?

Avec l’explosion des données clients, notamment des données personnelles, les entreprises cherchent des moyens d’obtenir des informations sur ce qui les entoure. Cela est fait dans le respect de la politique de confidentialité soutenue par le RGPD (règlement général sur la protection des données). Afin d’obtenir une perspective de leur activité sur le marché, elles ont recours à ce que beaucoup ont convenu d’appeler le data marketing : les moyens de connaître et de planifier des actions marketing à travers la mesure et le contrôle des données.

Qu’est-ce que le data marketing ?

Le data marketing est la mesure et l’analyse de toutes les sources d’informations disponibles, y compris sur les réseaux sociaux. Cette approche est ce qui est défini comme étant le data driven marketing. Les entreprises qui l’appliquent peuvent prendre des décisions qui influencent le contrôle et la définition d’une stratégie marketing et commerciale.

On peut dire que le data marketing n’est pas un type de marketing spécifique à l’instar du marketing entrant ou du marketing digital par les moteurs de recherche (SEO, SEM…). Bien que ces types de marketing coexistent, ils sont en grande partie séquentiels. Chacun d’eux fait partie de différentes parties de ce que l’on appelle l’entonnoir de vente marketing.

entonoire-des-ventes-data-marketing

Les bases de données marketing couvrent tous les composants d’une stratégie marketing. Chacun des éléments d’un plan marketing doit pouvoir être mesurable. De par sa nature même, il est une pièce complémentaire à l’ensemble des actions marketing qu’une entreprise mène. Ainsi, il permet de connaître l’utilisation des données qui affectent l’ensemble de sa stratégie marketing, soutenant son activité passée et présente pour établir de nouvelles campagnes publicitaires.

Que faire des données ?

La chose fondamentale dans le data marketing est que les entreprises peuvent étudier les modèles de comportement, la tendance des utilisateurs et leurs habitudes. Une fois que tout cela a été détecté, elles ont la possibilité de définir clairement les actions à appliquer en marketing.

Pour ce faire, elles ont deux solutions. L’une est manuelle où elles évaluent et supervisent toutes les données avec leur équipe. L’autre est d’utiliser l’intelligence artificielle par le biais d’outils d’apprentissage automatique qui se charge de révéler le moment pour réaliser l’action de communication.

En remontant l’histoire d’au moins une dizaine d’années, les données fondamentales pour exercer le contrôle de l’information et la gestion des données ont commencé à être développées dans le marketing. Cela a permis d’avoir le contrôle de toutes les informations qui affectent une entreprise.

Des données importantes et volumineuses sont collectées par les entreprises à chaque seconde. Il est essentiel de les reconnaître, de les stocker, de les collecter, de les classer et de les exporter. Ces techniques doivent aller de pair pour faciliter la compréhension de tous les processus.

Comment appliquer le data marketing ?

Pour mettre en place le data marketing dans une stratégie marketing, toute entreprise doit connaître les points suivants :

  • Volume de données. Toutes les données nécessaires sont tirées du Big Data. Il est essentiel de détecter celles qui affectent ou non le business model.
  • Organisation et hiérarchie. Grâce à un diagramme de flux de travail marketing, on sélection les données. Puis, on les hiérarchise et les organise.
  • Accès rapide. Il faut disposer d’un processus pour pouvoir consulter immédiatement les données lorsque c’est nécessaire.
  • Plusieurs sources. Toute entreprise doit disposer de différentes sources de données du Big Data pour pouvoir les intégrer dans sa stratégie marketing.
  • Procédure de données. Il est important de connaître et de croiser toutes les variables. L’objectif est de pouvoir extraire les informations sans erreur.
  • Visualisation des données. Les informations doivent donner la possibilité de les représenter sous forme de graphiques ou d’images pour les rendre plus compréhensibles.

stratégie-marketing-data-science

En appliquant toutes ces recommandations, une entreprise possède une valeur ajoutée précieuse pour la prise de décision dans sa stratégie marketing. Pour faire simple, il s’agit d’un modèle de gestion intelligent des données.

Quels sont les avantages du data marketing ?

Parmi les avantages, on peut citer les suivants :

  • Facilite la prise de décision.
  • Améliore la capacité stratégique d’une entreprise.
  • Améliore la mesure du risque et la capacité de gestion de l’entreprise.
  • Aide à comprendre l’entreprise et les clients.
  • Donne la possibilité de rechercher de nouvelles opportunités d’affaires.
  • Soutiens la réalisation des objectifs de l’entreprise.
metier-data-engineer
Définitions

Qu’est-ce qu’un data engineer et que fait-il ?

Le métier de data engineer est l’une des spécialisations qui se généralise dans l’écosystème Big Data. Selon un rapport de LinkedIn sur les offres d’emploi émergentes de 2020, le poste de data engineer fait partie des 15 professions les plus importantes des cinq dernières années. Il se place aux côtés des autres nouveaux métiers tels que les experts de la data science et de l’Intelligence Artificielle (IA) ainsi que des ingénieurs en fiabilité de site.

Cependant, beaucoup de gens se demandent encore s’ils seraient à l’aise de travailler en tant que data engineer. Est-ce un cheminement de carrière intéressant ? Nous apportons des éléments de réponse dans cet article en définissant succinctement ce qu’il est, ce qu’il fait ainsi que les connaissances et compétences qu’il doit avoir.

Qu’est-ce qu’un data engineer ?

L’ingénieur de données est le professionnel chargé de l’acquisition, du stockage, de la transformation et de la gestion de données dans une organisation. Ce professionnel assume la configuration de l’infrastructure technologique nécessaire pour que les volumes de données de l’entreprise deviennent une matière première accessible pour d’autres spécialistes du Big Data tels que les data analysts et les data scientists.

Les data engineers travaillent sur la conception de pipelines de données, sur la création et la maintenance de l’architecture de ces données. Pour faire simple, le data engineering consiste à veiller à ce que les travaux ultérieurs d’exploitation, d’analyse et d’interprétation des informations puissent être effectués sans incident.

Que fait un data engineer au quotidien ?

Le quotidien d’un data engineer consiste à travailler avec des outils ETL (Extract – Transform – Load). Grâce à une technologie d’intelligence artificielle basée sur des algorithmes de Machine learning, il développe des tâches d’extraction, de transformation et de chargement de données. Ensuite, il les déplace entre différents environnements et les nettoie de toute erreur pour qu’elles arrivent normalisées et structurées aux mains du data scientist et data analyst.

taches-data-engineer

En ce sens, le rôle du data engineer est comparable à celui d’un plombier. Il consiste à mettre en place et à entretenir le réseau de canalisations à travers lequel les données vont passer. Ainsi, il garantit le bon fonctionnement de l’ensemble de l’organisation.

1.      Extraction

Dans la première étape du processus ETL, le data engineer prend les données de différents endroits et étudie l’incorporation de nouvelles sources dans le flux de données de l’entreprise. Ces données sont présentées dans différents formats et intègrent des variables très diverses. Ensuite, elles vont vers des data lakes ou un autre type de référentiel où le stockage de données est fait de manière brute et facilement accessible pour toute utilisation future.

2.      Transformation

Dans la deuxième étape, le data engineer procède au nettoyage des données. Il élimine les doublons et corrige les erreurs. Puis, il les classe pour les transformer en un ensemble homogène.

3.      Chargement

Dans la dernière étape, le data engineer charge les données vers leur destination. Il peut s’agir des propres serveurs de l’entreprise ou du Cloud. À part cela, il doit également veiller sur un point important de cette étape finale : la sécurité des données. En effet, il doit garantir que les informations soient correctement protégées des cyberattaques et des accès non autorisés.

Quelles connaissances doit avoir un data engineer ?

Tout d’abord, il doit avoir une connaissance courante des bases de données relationnelles et du langage de requête SQL. Cela lui permet de connaître les techniques de modélisation de données les plus utilisées et de savoir comment accéder aux données sources lorsqu’elles sont disponibles.

Il doit aussi connaître les techniques de nettoyage, de synthèse et de validation des données. Ainsi, les informations parviennent à leurs utilisateurs de manière adaptée pour leur exploitation correcte.

Il doit également savoir utiliser de manière optimale les moteurs de traitement de Big Data tels que Spark ou Flink.

Quelles technologies sont essentielles pour un data engineer ?

Les technologies utilisées par le data engineer comprennent les bases de données non relationnelles et les méthodes de modélisation des données. Parmi ces technologies, on peut citer comme exemple HBASE, Cassandra ou MongoDb. Il est aussi intéressant qu’il sache utiliser les moteurs d’indexation tels que SolR et ElasticSearch.

elasticsearch-data-engineering

Dans les systèmes de collecte de données d’aujourd’hui, il est très important pour ce professionnel de maîtriser les technologies qui lui permettent d’y accéder en temps réel. On parle généralement de technologies de streaming comme Flume, Kafka ou Spark Structured Streaming.

Son système d’exploitation habituel est Linux où il doit maîtriser parfaitement l’environnement. Côté langages de programmation, les plus communs sont Java, Scala ou Kotlin pour le développement de processus de traitement de données. Concernant Python, il sert pour l’analyse et la préparation préalable des données.

Par ailleurs, il est de plus en plus important qu’il ait une connaissance du développement d’applications natives pour le Cloud. Aujourd’hui, c’est un mouvement que de nombreuses entreprises suivent. Connaître les différences entre le développement d’applications locales et basées sur le Cloud est nécessaire. La principale raison est la transition en toute sécurité.

Enfin, l’ingénieur de données doit pouvoir évoluer en toute confiance dans un grand nombre de domaines différents de l’informatique. Il ne doit jamais cesser d’apprendre et d’ajouter de nouveaux outils à ses bagages professionnels.

data management
Définitions

Qu’est-ce que le data management ?

Le concept de data management ou gestion des données comprend une liste complète de sujets associés et connexes qui couvrent l’ensemble du processus de gestion et d’exploitation des données. Dans cette liste, nous pouvons trouver des termes tels que l’architecture de données, la modélisation de données, l’intégration de données, la qualité des données, le Big Data  la confidentialité et la sécurité des données. Il s’agit d’une partie du Business intelligence permettant, au même titre que les autres éléments clé de la data science, de mettre en place des outils optimisant la prise de décisions.

Qu’est-ce que le data management ?

On entend souvent parler de la gouvernance des données ou data governance. Mais, il ne s’agit que d’un élément clé du data management. Et la gestion des données est un ensemble complet de pratiques, de concepts, de procédures et de processus. C’est également un large éventail de systèmes complémentaires qui permettent à une organisation de prendre le contrôle de ses ressources d’informations, de la collecte à la sécurisation des données.

Le data management en tant que pratique générale concerne le cycle de vie complet de données de référence depuis leur point de création d’origine jusqu’à leur mise hors service finale.

Concepts autour du data management

Beaucoup de questions sont posées autour du sujet « data management » :

  • Est-il facile d’accéder, de nettoyer, d’intégrer et de stocker les données personnelles des gens ?
  • Quel type de données les acteurs au sein de l’entreprise utilisent-ils ?
  • L’entreprise dispose-t-elle d’un système efficace pour une analyse de données au fur et à mesure qu’elles circulent en interne ?

taches-data-management

Ces questions invitent à comprendre certains concepts permettant de connaître en profondeur ce qu’est réellement la gestion des données :

1.      Accès aux données

Ce terme fait référence à la capacité d’accéder et de récupérer des informations où qu’elles soient. Certaines technologies peuvent rendre cette étape aussi simple et efficace que possible afin que les entreprises puissent utiliser les données et ne pas seulement les trouver.

2.      Qualité des données

Il faut s’assurer que les données soient exactes et utilisables aux fins prévues. Cela commence à partir du moment où elles sont trouvées et se poursuit via divers points d’intégration avec d’autres données.

3.      Intégration de données

Ce terme définit les étapes pour combiner différents types de données. Les outils d’intégration de données permettent de concevoir et d’automatiser les étapes.

4.      Contrôle des données

Il s’agit d’un ensemble continu de règles et de décisions permettant de gérer les données d’une entreprise afin de garantir que la stratégie sur ces données est alignée celle de l’entreprise.

5.      Master data management (MDM)

Unification et gestion de toutes les données communes et essentielles à tous les domaines d’une organisation. Ces données de base sont généralement gérées à partir d’un seul emplacement ou concentrateur.

6.      Transmission de données

Implique l’analyse des données au fur et à mesure qu’elles se déplacent en appliquant une logique aux données : identification des modèles dans les données et filtration pour des utilisations multiples à mesure qu’elles circulent dans l’organisation.

Avantages apportés par le data management

Pour une entreprise, le data management est la première étape dans la gestion d’un volume de données à la fois structurées et non structurées. Mais, ce n’est que grâce aux meilleures pratiques qu’elle peut exploiter la puissance de ces données. C’est également l’unique solution pour obtenir les informations dont elle a besoin pour rendre les données utiles.

En fait, le data management permet aux organisations d’utiliser l’analyse des données à des fins de marketing et de relation client :

  • Personnaliser l’expérience client
  • Ajouter de la valeur aux interactions avec les clients
  • Identifier en temps réel les causes des échecs marketing
  • Récolter les revenus associés au marketing axé sur les données
  • Améliorer l’engagement client
  • Augmenter la fidélité des clients

CRM-Data-Management

Bonnes pratiques dans le data management

Dans toute opération de data management, il faut savoir gérer les données et acquérir les connaissances nécessaires pour prendre de bonnes décisions. Pour ce faire, il faut commencer par se poser une question d’ordre commerciale et acquérir les données nécessaires pour y répondre.

Les entreprises collectent de grandes quantités d’informations à partir de diverses sources. Elles utilisent ensuite les meilleures pratiques tout au long du processus de stockage et de gestion, de nettoyage et d’extraction des données. Enfin, elles procèdent à l’analyse et la visualisation des données pour éclairer leurs décisions commerciales.

Il est important de noter que les meilleures pratiques de gestion des données se traduisent par des améliorations analytiques en même temps. En gérant et en préparant correctement les données pour l’analyse, les entreprises optimisent leur Big Data.

Certaines des meilleures pratiques de data management que les entreprises cherchent désespérément à mettre en œuvre sont :

  • La simplification de l’accès aux données traditionnelles et émergentes.
  • Le nettoyage des données pour insuffler de la qualité dans les processus métier existants
  • Le façonnage des données à l’aide de techniques de manipulation flexibles
Data Scientist art
Dossier

Quel est le salaire d’un data scientist ?

En termes de popularité, le métier de data scientist s’est avéré être un choix de carrière fructueux. La demande mondiale de ce professionnel croit d’année en année. Il est considéré comme un élément essentiel dans l’équipe d’une entreprise. Il apporte des informations permettant de prendre des décisions stratégiques et de fournir un service de qualité aux clients.

Ce cheminement de carrière connait un popularité croissante. Et l’une des principales questions que les gens se posent porte sur le salaire d’un data scientist. Combien pourrait gagner quelqu’un qui souhaite étudier le domaine de la data science et devenir un data scientist ?

Les compétences font la différence

La science des données est un terme assez général, bien que différent de l’analyse de données. Beaucoup de gens avec des spécialités différentes peuvent travailler comme data scientist. Du moins, ils peuvent effectuer certaines des tâches de ce professionnel.

Tous ceux qui souhaitent travailler sur le Big Data et devenir un data scientist ne sont pas tous des sortants de l’université avec un diplôme spécifique. En réalité, il y a d’autres spécialités qui ouvrent les portes des emplois liés aux data sciences, y compris le métier de data analyst.

Dans cet esprit, la chose la plus évidente est que les gens qui se forment pour devenir des data scientists et cherchent un emploi ont généralement des compétences différentes. Certains sont meilleurs dans l’organisation et la segmentation des données via des outils de data mining. D’autres sont compétents dans la détermination des ensembles de données et des variables par le biais de la Machine Learning. C’est pourquoi le salaire d’un data scientist peut varier. Déterminer un salaire moyen stable est un peu difficile même si une étude de PayScale confirme qu’il est estimé à 44 996 euros.

evolution-salaire-data-scientist

Le salaire d’un data scientist junior

Les data scientist juniors représentent le groupe de débutants intéressés par les sciences des données. Le salaire à ce niveau de compétence est un facteur qui affecte le salaire moyen de la profession. En discuter est donc important.

Les data scientists juniors sont des jeunes universitaires fraîchement diplômés en mathématiques ou statistiques qui sont à la recherche d’un emploi. Ils n’ont aucune expérience dans le domaine, sauf au-delà des stages professionnels qu’ils ont pu faire. Ils sont simplement à la recherche d’un premier emploi stable.

Évidemment, lorsqu’on parle de leur salaire, ce sont eux qui gagnent le moins.  L’apprentissage et l’acquisition d’expériences pratiques sont leurs principaux objectifs. Beaucoup d’entreprises embauchent des data scientists juniors en leur offrant une formation en interne et une préparation aux futures tâches.

La fourchette de salaire varie de 45 000 euros à 50 000 euros par ans, que ce soit un poste dans les grandes villes ou en région.

Le salaire d’un data scientist confirmé

Les data scientists confirmés sont considérés comme au milieu lorsqu’on parle de salaire. Ces professionnels ont déjà de l’expérience dans leur domaine (environ 2 à 5 ans). Ils travaillent généralement depuis longtemps dans une entreprise. Ils ont ainsi choisi leur cheminement de carrière et ont commencé à gravir les échelons à travers des expériences pratiques afin d’avoir une augmentation de salaire.

D’un autre côté, ces data scientists n’ont pas tous des emplois stables. Ils recherchent souvent des emplois temporaires ici et là même si honnêtement, ce n’est pas si facile dans ce domaine. Cependant, une chose est sûre : ils savent déjà ce qu’ils font et n’ont pas besoin d’aide.

Ils sont mentionnés quand on parle du salaire moyen d’un data scientist. On peut en effet s’attendre à ce qu’ils gagnent plus que le salaire d’un data scientist junior et moins qu’un data scientist senior. Mais, ce n’est pas souvent le cas.

Un data scientist peut peiner à pouvoir atteindre un niveau « confirmé » et continuer à apprendre les ficelles du métier. Il peut également devenir facilement un employé avec une certaine ancienneté et être sur la bonne voie pour devenir un data scientist « senior ».

Toutefois, de par la nature de son travail et de son expérience, il recevra un salaire bien plus élevé. Généralement, il est dans une fourchette de 51 000 euros à 70 000 euros par an selon le niveau d’expérience.

Le salaire d’un data scientist senior

Enfin, nous arrivons sur le sujet des salaires des data scientists seniors. Ce sont des scientifiques des données chevronnés. Ils sont entièrement dévoués à leur travail et peuvent s’adonner à toutes les tâches dans le domaine de la data science.

Les data scientists seniors sont des personnes qui ont consacré leur vie à leur profession. Ils travaillent généralement pour la même entreprise depuis de nombreuses années et font partie du personnel essentiel de l’équipe (5 à 9 ans d’expérience, voire même 10 à 19 ans d’expérience).

salaire-data-scientist-senior

Si le salaire d’un data scientist junior est le plus bas, celui d’un data scientist senior est à un niveau qui doit être dans les objectifs de carrière de tous les data scientists. Et pour cause, il est l’expert de la data science qui gagne le plus d’argent par rapport à ses autres collègues. Son salaire varie de 69 000 euros à 100 000 euros en fonction des expériences acquises.

formation-data-management
Dossier

Formation en data management : la gouvernance des données

Une formation pour devenir data manager telle qu’un Master data management a pour objectif de former des experts au traitement avancé de gros volumes de données. Pour ce faire, il va acquérir les compétences nécessaires pour maîtriser divers outils et techniques : récupération, stockage, analyse et visualisation des données. Cela concerne celles produites dans les différents systèmes d’information contenant des données massifs appliqués à tout secteur économique.

La mise en place d’une formation data management naît de la nécessité de former des professionnels à l’analyse du Big Data dans un contexte où les données collectées sont déterminantes dans la prise de décisions dans n’importe quel secteur.

Les sujets traités tout au long de la formation data management

  • Fondements technologiques du Big Data
  • Modèles de programmation pour le Big Data
  • Optimisation des gros volumes de données
  • Méthodes de récupération et de stockage des données
  • Gestion de la qualité des données (data quality)
  • Les flux de données et les modèles de prédiction
  • Apprentissage non supervisé
  • Traitement des données pour la Business Intelligence
  • Intelligence pour le Big Data
  • Visualisation de données
  • Protection des données (nouvelles tendances et loi sur la sécurité des données)
  • Exploration de données
  • Tendances de la cybersécurité

Les profils des candidats

Dans cette section, nous allons vous détailler certaines des caractéristiques du profil recommandé pour les personnes qui souhaitent suivre une formation data management.

Les écoles et formations continues ou à distance proposent généralement une étude de profil. Cela aide les candidats à mieux comprendre comment ils vont explorer les parcours de la formation. Par la même occasion, ils seront orientés vers les métiers faisant partie de leurs préférences où ils tireront la meilleure partie de leurs compétences.

competences-data-management

Capacités

  • Compétences mathématiques
  • Analyse du problème
  • Analyse des informations
  • Sensibilité organisationnelle
  • Compétence numérique
  • Capacité critique
  • Planification et organisation

Intérêts

  • Connaître les applications de l’analyse Big Data dans les entreprises et entreprises de tous secteurs
  • Maîtriser les techniques et outils disponibles pour la visualisation, le stockage, la gestion des données de références et l’utilisation des informations fournies par le Big Data
  • Élargir les connaissances en Intelligence artificielle
  • Connaître les dernières tendances en matière de droit de la cybersécurité et de la sécurité des données

Aspects de personnalité recommandés

  • Agilité mentale
  • Constance
  • Méticulosité
  • Précision
  • Discipline
  • Engagement

Les domaines professionnels du data manager

Voici quelques lignes directrices concernant les possibilités de placement auxquelles un étudiant en data management peut postuler à la fin de la formation.

Débouchés

Les opportunités professionnelles après une formation data management, y compris un Master, sont très larges. En effet, les données massives sont une réalité qui touche aujourd’hui tous les secteurs économiques et sociaux. L’analyse de données peut être appliquée dans des domaines. Cela peut aller de la gestion de l’information dans des entreprises publiques et privées à l’analyse de données Web en passant par l’analyse de données marketing et le développement de systèmes.

Fonctions et activités

  • Récupérer, analyser et organiser les informations de manière compréhensible pour aider les entreprises à prendre des décisions.
  • Gérer les outils utilisés pour la collecte et le stockage des données afin de configurer des systèmes de stockage et de traitement évolutifs.
  • Collaborer avec les entreprises et les institutions dans la prise de décisions concernant leurs activités après une analyse exhaustive des données et des informations disponibles.
  • Diriger les projets pour obtenir des connaissances grâce à des méthodologies efficaces d’analyse de données volumineuses.
  • Appliquer l’analyse et la gestion des données aux opportunités commerciales spécifiques d’une entreprise.
  • Construire des systèmes de veille stratégique en utilisant les outils les plus appropriés.
  • Concevoir et appliquer des solutions liées aux problèmes de sécurité et de confidentialité dans les environnements Big Data.

Perspectives d’emploi

Les technologies de l’information et de la communication (TIC) sont l’un des principaux secteurs émergents dans lesquels les possibilités d’emploi sont à la hausse.

Aujourd’hui, on constate que la majorité des entreprises augmentent leurs investissements dans des projets Big Data et Intelligence artificielle. Ce fait signifie que le marché du travail dans ce secteur est très favorable pour trouver un emploi.

emplois-data-management

De plus, l’analyse et la gestion de données massives intéressent les entreprises de tout domaine. Ainsi, l’offre d’emploi est très large tant en nombre que dans des environnements où elle peut être pratiquée.

Formation complémentaire et études associées

En complément d’une formation data management, il est possible de suivre des cours de transformation numérique qui permettront d’avoir une vision plus large et actualisée du monde des affaires. De plus, tous les cours sur l’Intelligence artificielle, la cybersécurité ou sur d’autres aspects liés au Big Data sont utiles pour être au courant des dernières nouveautés technologiques du secteur. Il est important de rester à jour. La raison est que les technologies évoluent constamment.

Les entreprises prêtent attention aux bagages des postulants aux postes liés au Big Data qu’elles proposent. Toute acquisition de nouvelles compétences est également un atout, surtout sur le salaire. En effet, cela signifie que le candidat a enrichi son expérience en maîtrisant de nouvelles techniques.