Dossier

Pollution Numérique et Data Science

La crise du Covid et la pause imposée à certaines industries comme le transport aérien a soulevé une nouvelle fois l’impact néfaste de l’Homme sur son environnement et le rôle qu’il peut jouer pour préserver la planète. Face aux gros pollueurs dont l’activité est de plus en plus critiquée, il existe une pollution encore méconnue: la pollution numérique  . Connue par 17% des Français selon une étude d’Inum, elle désigne la pollution liée à l’impact du numérique dans son ensemble, c’est-à-dire de sa création et sa fin de vie. 

Que représente la pollution numérique par rapport à toutes les autres formes de pollution ? Quels sont les mécanismes en jeu ? Comment limiter l’impact du numérique sur la planète ?

Pollution numérique : Des chiffres surprenants

La  pollution numérique est responsable de l’émission de 1400 millions de tonnes de CO2 par an, soit 4% des émissions mondiales de gaz à effet de serre. Elle est issue principalement des data center à hauteur de 25%, des infrastructures de réseau à 28% et à 47% en ce qui concerne les équipementsIl est généralement plus symbolique de comparer ces chiffres à quelque chose plutôt que de les citer.  La forte augmentation d’utilisateurs et notre consommation de données laissent prévoir que d’ici 2025, cette empreinte aura doublée

 

Les gestes du quotidien, pris individuellement, n’ont pas grand impact. Le problème est que ces petits gestes font partie d’une masse beaucoup plus vaste.  Pour visualiser l’impact du numérique, il faut se rendre compte qu’internet c’est 45 millions de serveurs, 800 millions d’équipements réseaux, 15 milliards d’objets connectés en 2018, 10 milliards de mails envoyés (hors spam) et 180 millions de requêtes en 1 heure

Voici ce que des gestes anodins du quotidien peuvent représenter comme pollution  :

  • 1 mail est l’équivalent d’une ampoule basse consommation pendant 1h, alors on multiplie cela par 10 milliards. 
  • 1 internaute c’est 1000 requêtes par an, soit 287 000 de CO2, soit 1,5 millions de km parcourus en voiture
  • Encore plus gourmand, le streaming vidéo ! Il représente 60% des flux de données sur internet et on comprend pourquoi quand on sait que rien que Pulp Fiction pèse 200 000 fois plus lourd qu’un email sans pièce jointe. 

Ces chiffres peuvent sembler exagérés, mais il s’agit bien de la réalité. Cependant, il faut noter que la plus grande part de pollution provient de la fabrication des matériels numériques et non de leur utilisation. Un téléviseur nécessite 2,5 tonnes de matières premières pour sa création, ce qui est équivalent à un aller-retour Paris Nice en avion en termes de CO2. Un ordinateur de 2kg nécessite 800 kg de matière premières. Et plus c’est petit, plus c’est polluant. Alors on vous laisse imaginer pour un smartphone.

 La Data Science pour aider à réduire la pollution numérique

La data science a bien sûr son rôle à jouer dans tout ça. Plusieurs start-up ou entreprises font appel à cette technologie. La start-up Cleanfox a développé un outil qui vous débarrasse des spams et newsletter : «Nous avons développé des technologies nous permettant de lire les en-têtes des mails sans récupérer de données personnelles, explique Édouard Nattée, le fondateur de Cleanfox. Nous nous sommes aperçus que ces mêmes technologies pouvaient nous servir à détecter des newsletters et proposer à l’internaute de se désabonner automatiquement.». Cleanfox analyse votre boite mail et vous propose de supprimer ou non ce mail, en donnant des informations relatives tel que la quantité de CO2 entraîner par ce mail par exemple.

Comment la data science peut-elle lutter contre le réchauffement climatique ?

Au cœur des enjeux planétaires actuelles, le réchauffement climatique constitue un des plus grands défis de notre époque. Malgré de nombreuses politiques menées par les pays du monde entier visant à réduire les émissions de CO2, le volume d’émission de dioxyde de carbone continue de croître de manière exponentielle si bien que les chances de survies de l’Homme au sein de la planète Terre s’amenuisent de jours en jours. Toutefois, même si l’horloge tourne, l’Homme accompagné des nouvelles technologies qu’il a mis au point a encore la possibilité de sauver notre chère planète bleue. C’est dans ce contexte que l’Intelligence Artificielle et le Machine Learning pourraient devenir les défenseurs n°1 de la lutte contre le réchauffement climatique. 

 

Voici le top 5 des différentes façons au travers desquelles le Machine Learning pourrait permettre de sauver la planète :

Le Machine Learning pour gérer la consommation d’énergie

De nos jours, la consommation d’énergie et des combustibles fossiles tels que le pétrole ne cessent de polluer contribuant ainsi grandement au réchauffement de la planète. Pour lutter contre cette consommation dévastatrice, les gouvernements des pays du monde entier tendent à privilégier désormais les énergies renouvelables telles que le vent ou le soleil qui, en plus d’être moins néfastes pour l’environnement, coûtent moins chers.

Néanmoins, ces sources d’énergie étant fortement dépendantes de la météo, il semble difficile pour l’Homme de déterminer la quantité exacte d’énergie qui sera produite.
Les algorithmes de Machine Learning, en analysant les données météorologiques et les conditions atmosphériques pourraient non seulement prédire le volume d’énergie généré mais également prédire la demande permettant ainsi de redistribuer la production vers les différentes centrales, tout en évitant le gaspillage.

Autre point intéressant, les nouvelles technologies permettent, sur la base de l’intelligence artificielle, de gérer la consommation d’énergie. Les assistants intelligents peuvent étudier les habitudes d’une maison et décider d’éteindre le chauffage pendant que personne n’y est et de réchauffer la maison une heure avant le retour des résidents.
La prévision de l’énergie nécessaire pour alimenter une machine, une usine, voire une ville permet de ne pas sur-produire, ainsi de ne pas gaspiller et ne pas émettre de l’énergie inutilement.

Le Machine Learning pour gérer le secteur du transport

Un autre secteur où le Machine Learning pourrait avoir impact positif retentissant est le transport. En effet, il pourrait par exemple optimiser les trajets permettant ainsi un allégement du trafic routier, un des acteurs actuels les plus polluants.

Le Machine Learning pour aider les satellites de surveillance de CO2

En vue de contrôler la quantité de CO2 émises par chaque pays européen, l’UE envisage dans les années à venir de mettre en place des satellites de surveillance de CO2Le Machine Learning, combiné aux données récoltées par ces satellites pourrait permettre d’identifier non seulement les émetteurs principaux de CO2 mais également les secteurs d’activité les plus polluants.  Il sera plus facile pour un pays par exemple de déterminer les  domaines sur lesquels il faudra réfléchir en priorité pour moins polluer.

Le Machine Learning pour aider les pays les plus vulnérables au réchauffement climatique

Le Machine Learning, en étudiant les données et photographies prises par les satellites, pourrait identifier les différentes régions du monde sujettes au réchauffement climatique. Cela pourrait par la même occasion permettre aux différents pays concernés d’anticiper et ainsi de mieux gérer les éventuelles catastrophes naturelles qui risquent de les frapper. 

De même, une analyse en temps réel des publications via les réseaux sociaux comme Twitter ou Facebook permettraient de déterminer dans quelles régions du monde, une aide est la plus nécessaire.

Le Machine Learning pour éviter le gaspillage alimentaire

L’analyse de données massives via le Machine Learning pourrait permettre d’optimiser des processus industriels et donc de réduire les émissions polluantes. Par exemple, les fermiers pourrait recevoir en temps réel des informations sur leurs plantations pour diffuser la quantité d’eau nécessaire. Autre exemple, des entreprises spécialisés pourraient organiser la redistribution de nourriture pour éviter le gaspillage en alimentant les zones connaissant des carences.

Devenir Data Scientist pour sauver la planète

Dans cet article, vous avez pu découvrir les opportunités que les data sciences offrent pour lutter contre le réchauffement climatique au travers une meilleure gestion de l’énergie et des ressources disponibles. Pour maîtriser ces nouvelles technologies, une formation s’impose. Pourquoi ne pas choisir un organisme qui a déjà fait ses preuves pour former des data scientists de plus de 30 grands groupes français et qui ouvre désormais ses classes aux particuliers ?

 

Comme nous l’avons observé tout au long de cet article, la pollution numérique a un impact négatif conséquent sur l’environnement et ne cesse d’augmenter exponentiellement.  La data science, de par son étude de la big data, nécessite une grande quantité de données, très polluante à conserver. Néanmoins, l’intelligence artificielle et le Machine Learning, à travers leurs capacités à s’appliquer à des domaines tels que l’énergie, le transport, le gaspillage alimentaire offrent de vastes perspectives d’avenir synonymes de lueurs d’espoirs pour la préservation de notre planète. Il convient alors aux différents gouvernements et aux entreprises de trouver un juste milieu entre l’impact négatif et l’influence positive que pourraient apporter la data science à l’environnement.

Evènements

Participez au salon Big Data Paris 2020

Big Data Paris est le salon de référence dans l’univers du Big Data. Vous y retrouverez l’actualité des projets Data dans l’industrie, l’évolution de l’Open Data ou encore les nouveautés de Data analytics (BI, Datavisualisation, advanced analytics). Vous pourrez assister à des conférences sur la gouvernance des données ou sur la Sécurité des données. Si l’IA et le Big Data sont deux sujets qui vous passionnent, vous découvrirez les technologies de machine learning qui les combinent.

 

Avec AI Paris, Big Data Paris prévoit d’accueillir 20 000 visiteurs, 370 sponsors et exposants et plus de 300 conférences et ateliers. Les ateliers et les conférences seront accessibles en Live ou en replay.

Nous vous recommandons de privilégier le salon physique puisqu’il sera plus facile pour vous d’échanger avec les exposants sur vos problématiques métiers. N’oubliez cependant pas de respecter les gestes barrières et autres mesures de sécurité sanitaire.

Participez au Data Challenge – En partenariat avec DataScientest

Vous pourrez aussi avoir l’occasion de participer à un des événements les plus attendus du salon :  Le Data Challenge. En accès libre sur le salon Big Data Paris Porte de Versailles, vous pourrez essayer d’exploiter les données de plus de 400 000 stations météorologiques et créer le meilleur modèle prédictif de la concentration en particules fines. Ce Data Challenge vous est proposé par DataScientest, leader français de la formation des métiers Data Sciences.

Evènements

Participez au salon AI Paris 2020

L’année 2020 a été marquée par la crise sanitaire mondiale. Le secteur de l’événementiel a été fortement touché et son avenir reste incertain. Aujourd’hui, nous avons plus de visibilité sur l’organisation des événements à venir. Nous avons réuni pour vous les deux salons qui vont marquer l’univers de la Data et de l’Intelligence Artificielle d’ici la fin de l’année 2020.

Cette année, cet événement signé Corp Agency présente une particularité. Pour y assister, deux possibilités: vous rendre au salon physique qui se déroulera 1 place de la Porte de Versailles dans le XVe arrondissement de Paris ou prendre part au salon virtuel accessible sur votre ordinateur ou sur votre smartphone.

 

Cette diversité de choix entre salon physique ou salon virtuel est une tendance que l’on observe depuis quelques années maintenant, mais les conditions sanitaires mondiales ont encouragé ce phénomène.

Deux jours d’exposition sont prévus pour vous informer sur les enjeux et avancées du monde de l’intelligence artificielle avec la participation de grandes entreprises telles qu’IBM, Microsoft ou Google Cloud. AI Paris 2020, c’est un lieu de rencontre et d’information où vous serez tenu au courant des dernières actualités et où vous rencontrerez les grands acteurs de l’intelligence artificielle.

Le salon a lieu le 14 et 15 septembre de 8h30 à 19h30. Afin de s’adapter aux contraintes liés à l’épidémie de COVID-19, les salons Big Data Paris et AI Paris auront lieu en simultanée. 

Participez également au salon Big Data Paris 2020

En simultané avec AI Paris, Corp Agency organise également le salon Big Data Paris 2020.

Comment apprendre?

S’entraîner à coder en javaScript en toute simplicité !

Coder en JavaScript est indispensable à tout data scientist travaillant de près ou de loin avec un site web. 1er réflexe, suivre assidûment les cours JavaScript de codecademy, bien sûr !

Mais ce n’est pas tout ! Etant donné que ce language est la partie dynamique et interactive d’un site web, et qu’il s’intègre avec le code html présent sur la page, pourquoi ne pas s’entraîner sur page créée de toute pièce ?

Et oui, il y a une app’ pour ça ! On m’a récemment fait connaître (merci Clément !) un petit bijou que je souhaite partager avec vous aujourd’hui 🙂

Continue Reading

Actualités

L’ultimate list des plateformes SaaS de Data Science !

La data science se démocratise … à tel point que l’on voit fleurir de plus en plus de SaaS et autres plateformes pour devenir le parfait petit DataScientist ! C’est l’avènement du DSaaS (DataScience As A Service), que l’on constate surtout outre-atlantique, mais cela ne saurait tarder en France !

Je vous propose de lister ici ces nouvelles plateformes, user-friendly, qui rendent la data science facile. La liste a pour dessein d’évoluer dans le temps !

Continue Reading

Définitions

Aperçu – simple ! – des principaux modèles prédictifs

De nombreux termes barbares hantent les articles liés à la Data Science et au prédictif, que ce soient des algorithmes ou des modèles, comment avoir un aperçu de ce qui les caractérise et les différencie, sans pour autant être bac+10 en statistiques ?

Réponse sur 3 modèles que j’ai le plus fréquemment rencontrés : la régression linéaire, la régression logistique et l’arbre de décisions.

Attention, cet article s’adresse à des non-matheux, d’où un langage et des explications volontairement simplifiées 😉

Continue Reading