All Posts By

Aurelia F

Certification DA-100
Dossier

Préparation à l’examen DA-100 Analyser des données avec Microsoft Power BI : les grandes lignes

Le « DA-100 Certification » est l’un des examens ou « Certification Exams » proposés sur Microsoft Learn à destination de nombreux professionnels et experts des données, dont les Data Analysts. Le certificat « Microsoft Certified Data Analyst » est un titre donné à tous les candidats qui réussissent l’examen et maîtrisent les outils Power BI (Power Bi Desktop et Power BI Service) pour l’analyse des données.

Afin de mieux se préparer et réussir l’examen (pass the exam DA-100), il est important de bien se préparer à travers des « practice tests » et de se référer au guide de l’examen (DA-100 learning paths).

Dans cet article, nous expliquons les grandes lignes des compétences mesurées durant l’examen (DA-100 Exam skills mesured).

Analyse du guide de l’examen

La première chose qu’on constate sur le guide du DA-100 Exam est qu’il explique à qui s’adresse l’examen. Ce sont notamment les personnes responsables de la conception et de la création de modèles de données ou de rapports, du nettoyage et de la transformation des données et du développement de capacités d’analyse avancées qui ont une valeur commerciale importante.

Tablette Microsoft avec tasse en carton et mains

Cependant, l’examen n’est pas organisé de cette manière. De plus, cette liste n’est pas exhaustive. Cela signifie qu’il peut y avoir des sujets qui ne sont pas traités ici, mais qui sont testés lors de l’examen de certification. Malgré cela, le guide est d’une grande aide dans la préparation à l’examen.

Les compétences évaluées sont classées dans ces 5 domaines :

          Préparer les données (prepare the data)

          Modéliser les données (data models)

          Visualiser les données (visualize data)

          Analyser les données (data analysis process/advanced analytic)

          Mettre en œuvre et maintenir les livrables

Par rapport à cette liste, il y a beaucoup de sujets qui sont évalués. La principale raison à cela est qu’un Data Analyst doit vraiment avoir toutes ces compétences pour pouvoir s’acquitter correctement de son rôle. Chacune de ces sections a un poids différent, ce qui signifie que ce pourcentage est égal au nombre de points à l’examen qui sont liés à cette section.

Les principaux sujets et leur poids pour la note finale

Les learning paths du DA-100 Exam sont divisés en 5 points :

1.      Préparer les données (pondération : 20-25 %)

Cette section évalue la capacité du Data Analyst à connecter, nettoyer et transformer les données, ce qui se fait essentiellement avec l’éditeur de requêtes.

Il indique tout d’abord que l’analyste doit être capable d’obtenir des informations de différentes sources de données, de travailler avec des ensembles de données partagées, d’identifier les éventuels problèmes de performance dans la requête de données, d’utiliser des paramètres, entre autres.

Il parle ensuite du profilage des données, qui consiste à comprendre la structure des données, à identifier les statistiques de nos données et à obtenir leurs propriétés.

Enfin, cette section évalue que les données sont nettoyées, transformées et chargées. Par exemple, il est évalué que vous pouvez résoudre les incohérences, les problèmes de qualité des données, être capable de remplacer des valeurs, appliquer des changements à la forme de l’ensemble de données, travailler dans l’éditeur avancé pour modifier le code M, parmi plusieurs autres choses.  

2.      Modélisation des données (25-30 %)

Il évalue d’abord si le candidat sait comment définir un modèle de données. Cette étape inclut la définition des tables, l’aplatissement des hiérarchies, la définition des cardinalités des relations, la résolution des relations plusieurs à plusieurs, la définition du niveau de granularité approprié (c’est-à-dire le degré de désagrégation de nos informations dans notre table de faits).

Il évalue ensuite si le candidat est capable de développer un modèle de données en utilisant la direction du filtre, de créer des tableaux et des colonnes calculées, de créer des hiérarchies, de mettre en œuvre des rôles de sécurité au niveau des lignes et de mettre en place des Q&A.

La création de mesures via DAX est également incluse dans cette section. Ici, il est important de maîtriser la fonction CALCUL, de comprendre l’intelligence temporelle, de remplacer les colonnes numériques par des mesures, entre autres choses. Cependant, même si l’utilisation de DAX est spécifiée, la vérité est qu’il n’est pas très compliqué de passer l’examen. Si nous maîtrisons les fonctions CALCULATE et RELATED, ainsi que la différence entre les fonctions SUM et SUMX, nous pouvons réussir la partie DAX.

Enfin, il évalue si le candidat peut optimiser les performances du modèle. Par exemple : identifier les colonnes qui peuvent être supprimées du modèle de données pour le rendre plus efficace, identifier les mesures, les relations ou les visualisations qui sont peu performantes et optimiser le modèle en changeant les types de données.

3.      Visualiser les données (20-25 %)

Visualisation de vos données dans Power BI Desktop

Cette section évalue si le candidat peut ajouter des visualisations à ses rapports, modifier le format et les configurer, ajouter des visualisations avec R ou Python, configurer la mise en forme conditionnelle entre autres.

Ensuite, l’examen le soumet à la création de tableaux de bord : pouvoir établir une vue mobile, configurer des alertes de données, configurer la fonctionnalité Q&R, etc.

Cependant, il ne faut pas oublier que Power BI fait une distinction entre les rapports et les tableaux de bord. Les rapports sont ceux créés dans Power BI Desktop, tandis que les tableaux de bord sont créés dans Power BI Service et peuvent contenir des visualisations de différents rapports. 

Pour conclure cette section, l’examen évalue la facilité d’utilisation des rapports du candidat à l’aide des signets, des tooltips personnalisés, éditer et configurer les interactions entre les écrans.

4.      Analyse de données (10-15 %)

Premièrement, il est évalué ici l’amélioration des rapports afin que le public puisse détecter les informations. Il faut savoir appliquer le format conditionnel, faire une analyse TOPN, utiliser la visualisation Q&A et l’axe de lecture d’une visualisation entre autres.

Pour terminer cette section, le candidat doit savoir mettre en œuvre une analyse avancée (advanced analytic). Ici, il doit savoir identifier les données incontrôlées, effectuer une analyse des séries chronologiques, utiliser la fonctionnalité de regroupement, utiliser la fonctionnalité des influenceurs clés et l’arbre de répartition.

5.      Mettre en œuvre et maintenir les livrables (10-15 %)

Les Data Analysts génèrent des rapports qui les aident dans leur travail. Mais au sein d’une organisation, l’important est de partager ces rapports avec l’équipe de travail. C’est exactement ce que Microsoft essaie de changer et de faire avancer avec Power BI. C’est dans cette section que ces livrables sont évalués.

Ici, l’évaluation du candidat porte sur la configuration des données pour la mise à jour récurrente, de la sécurité au niveau de la ligne et de la mise à jour incrémentielle ainsi que l’approbation des ensembles de données.

Enfin, l’examen évalue la capacité du candidat à créer et configurer un espace de travail dans Power BI Service qu’il puisse partager ses rapports et ensembles de données avec l’organisation, soit pour les afficher, soit pour développer des rapports ensemble dans le Cloud. De plus, il lui est demandé de créer une application à partager avec l’ensemble de l’organisation.

Brainstorm business intelligence
Dossier

Power BI: solution de Business Intelligence pour les entreprises

Il existe de nombreux outils appliqués au secteur des entreprises qui, dans bien des cas, facilitent la prise de décision pour les parties prenantes, des chefs de département aux équipes commerciales et jusqu’au Directeur général. Si aujourd’hui, nous manipulons de plus en plus de données et d’informations pour prendre des décisions, nous devons avoir l’aide supplémentaire de la technologie et nous appuyer sur des solutions logicielles d’entreprise pour rationaliser ces tâches.

Les solutions logicielles Microsoft Power BI, qui en Anglais se réfère à Business Intelligence, et que l’on peut traduire par l’intelligence d’affaires. Il s’agit de solutions commerciales qui aideront les responsables des entreprises à accélérer le processus de prise de décision.

La différenciation des entreprises passe par une prise de décision correcte. Aujourd’hui, nous vivons dans une époque entièrement numérique où les décisions doivent reposer sur une base solide d’informations et de données bien contrastées.

BI ou Business Intelligence

Power BI

Parler de Power BI, c’est parler des services Power BI, c’est-à-dire, de l’ensemble de solutions et des méthodes axées sur l’analyse et la compréhension du Big Data. Ce dernier fait ici référence au grand volume de données qui sont générées à la fois dans les environnements professionnels et personnels, que ce soit par les personnes ou toute autre entité constituée de plusieurs individus.

Tous ces outils sont compilés sous les méthodologies d’un plan d’affaires d’entreprise qui doit se concentrer sur la collecte, l’analyse et la vérification du Big Data afin de développer une trajectoire visuelle et synthétisée.

Si l’on veut vraiment disposer d’une solution logicielle de Business Intelligence, elle doit permettre de faire :

          Des extractions de données volumineuses

          De l’analyse de données en temps réel

          De la création de modèles de données

          Des visualisations de données

          De la création de rapports

À partir de ces lignes directrices, toute entité commerciale doit localiser et travailler sur les incidents qui se sont produits et choisir l’option la plus bénéfique et la plus correcte pour l’entreprise.

Microsoft Power BI pour les entreprises

Power BI est une solution de Business Intelligence présentée par Microsoft. Elle est axée sur les entreprises et les indépendants et permet de disposer à tout moment et en tout lieu de toutes les informations et de la situation de l’entreprise.

En utilisant Power BI, il est possible de créer des rapports et des visualisations personnalisées présentant l’ensemble de l’entreprise. Cela se fait par le biais de tableaux de bord générés par diverses bases de données, l’évolution des projets, le développement commercial et plusieurs autres actions de l’entreprise.

Power BI est l’un des outils de Microsoft qui ont la possibilité d’être localisés dans le Cloud, ce qui permet de connaître de manière rapide les informations les plus importantes des différents panneaux qui sont continuellement mis à jour.

Les données collectées pour cet outil sont produites à partir de sources de données très diverses, y compris à une base de données Microsoft SQL Server.

À travers le programme, on peut développer et connecter des bases de données, configurer l’évolution graphique pour plusieurs objectifs : évaluer l’état de l’entreprise, analyser l’évolution des ventes, connaître le volume des commandes, vérifier les paiements fournisseurs et bien d’autres actions d’analyse, le tout en temps réel.

Une autre nouvelle fonctionnalité de la solution Power BI Desktop est son canevas à partir duquel des onglets peuvent être générés selon les besoins. Cela permet à l’utilisateur de créer sa propre idée, de mieux comprendre, d’interpréter et d’avoir une plus grande capacité d’argumentation lorsque les parties prenantes de l’entreprise devront prendre des décisions sur la base des données.

Et bien sûr, tout cela a l’avantage d’être disponible et opérationnel dans l’environnement de l’informatique en nuage. Le Cloud se chargera d’effectuer et de générer les opérations et les calculs nécessaires pour obtenir les résultats.

Enfin, il faut souligner une autre des caractéristiques des plus attrayantes. Il s’agit de la possibilité de sauvegarder les informations sur ordinateur et ensuite de publier les données et les rapports depuis le site Power BI pour les partager avec d’autres utilisateurs en ligne.

Quels sont les avantages de l’application de Power BI ?

Employés faisant du business intelligence

Tous les départements d’une entreprise sont essentiels au bon fonctionnement de celle-ci. Si l’un d’entre eux échoue dans ses objectifs, une chaîne d’échecs se produira. Par conséquent, l’entreprise dans son ensemble en souffrira également. C’est là qu’intervient l’outil Power BI.

Les solutions Microsoft pour entreprises (Power BI, Power Query, Office 365…) permettent la transformation numérique pour un travail beaucoup plus productif. L’outil Power BI permet d’intégrer tous les départements dès sa mise en œuvre.

En effet, il existe 4 avantages pertinents concernant cette solution de Business Intelligence :

          Accessibilité : les bases de données et les services Power BI sont à la fois accessibles dans le Cloud et sur Desktop.

          Informations mises à jour en temps réel : lorsque des problèmes ou des opportunités sont détectés instantanément, une plus grande optimisation du fonctionnement de l’entreprise est obtenue. Avec Power BI, cette détection et cette identification se font en temps réel.

          Interface intuitive : les informations sont claires et hiérarchisées et proviennent depuis tous les départements de l’entreprise. Elles sont également intuitives pour garantir une accessibilité complète à tout utilisateur.

          Agilité : de par sa conception, sa stratégie d’organisation et sa hiérarchie, Power BI permet une restitution détaillée des informations autant de fois que nécessaire. La mise à jour se fait en temps réel.

En conclusion, Microsoft Power Bi est une application intelligente et prédictive qui est un grand encouragement pour les entreprises et leurs dirigeants lorsqu’il s’agit d’interpréter et d’analyser toutes les informations. Il permet d’interpréter tous types de données et de les afficher dans des graphiques totalement compréhensibles par tous. D’ailleurs, Power BI a encore une fois été élue meilleure plateforme d’analyse de données et de Business Intelligence dans le Magic Quadrant de Gartner.

power-bi-logo
Dossier

Les différents cours pouvant être suivis durant une formation Power BI

Microsoft Power BI est une famille d’outils de Business Intelligence. À partir des données d’une entreprise, il permet de générer des rapports et donc des informations d’aide à la décision.

Le terme « famille d’outils » est ici employé, car les éléments qui composent Power BI sont nombreux. Les principaux sont :

          Power BI Desktop: une application de bureau qui peut être téléchargée gratuitement sur PC. C’est l’outil principal pour le traitement des données et la création de rapports.

          Power BI Service : l’environnement Cloud où les rapports créés avec Power BI Desktop sont publiés, analysés et partagés. On s’y connecte via un compte Microsoft.

          Power BI Mobile : les rapports peuvent également être analysés via une application pour appareils mobiles (Smartphones et tablettes).

Les utilisateurs de Power BI comprennent à quel point cet outil est incontournable. C’est la raison pour laquelle des cours spécifiques à destination de spécialistes des données et des TIC sont proposés par différents établissements et centres de formation.

Power BI pour les développeurs

Bien que Power BI soit un logiciel gratuit, en tant que service (SaaS), il permet d’analyser des données et de partager des connaissances. Les tableaux de bord Power BI offrent une vue à 360 degrés des métriques les plus importantes en un seul endroit, avec des mises à jour en temps réel et une accessibilité sur tous les appareils.

Développeurs heureux devant un ordinateur

Une formation Power BI à destination des développeurs consiste à apprendre à utiliser l’outil pour développer des solutions logicielles personnalisées pour les plateformes Power BI et Azure. Au terme de la formation, les étudiants auront acquis les compétences suivantes :

          Configurer des tableaux de bord en temps réel

          Créer des visualisations personnalisées

          Intégrer des analyses riches dans des applications existantes

          Intégrer des rapports interactifs et visuels dans des applications existantes

          Accéder aux données depuis une application

Création de tableaux de bord à l’aide de Microsoft Power BI

Cette formation couvre à la fois Power BI sur le web et Power BI Desktop. Elle s’adresse généralement aux chefs d’entreprise, aux développeurs, aux analystes, aux chefs de projet et aux chefs d’équipe. L’objectif est que les étudiants acquièrent une compréhension de base des sujets ci-dessous, ainsi qu’une capacité à utiliser et à mettre en œuvre les concepts appris.

          Power BI

          Power BI Desktop

          Utilisation de feuilles de calcul CSV, TXT et Excel

          Connexion aux bases de données

          Fusionner, regrouper, résumer et calculer des données

          Création de rapports

Conception du tableau de bord Power BI

interface-power-bi

Power BI est l’un des outils de visualisation de données les plus populaires et un outil de Business Intelligence. Il propose une collection de connecteurs de bases de données, d’applications et de services logiciels qui sont utilisés pour obtenir des informations de différentes sources de données, les transformer et produire des rapports. Il permet également de les publier pour pouvoir y accéder depuis des appareils mobiles. Mais, cela nécessite la conception de tableaux de bord.

Une formation axée sur la création de tableaux de bord s’adresse aux chefs d’entreprise, aux analystes commerciaux, aux Data Analysts, aux développeurs et aux chefs d’équipe qui souhaitent concevoir un tableau de bord Power BI parfait. À l’issue de cette formation, les participants pourront :

          Concevoir des tableaux de bord beaux et efficaces en suivant les règles critiques

          Choisir les bons graphiques en fonction du type de données à afficher

Data Analytics Process, solutions Cloud et solutions Power BI

Cette formation consiste à avoir une prise en main des solutions Cloud disponibles, des processus d’analyse de données nécessaires pour travailler avec des données dans le Cloud et des outils Power BI pour analyser les données.

L’objectif de la formation est d’apporter aux participants la capacité de :

          Installer et configurer Power BI

          Évaluer les différentes solutions de données offertes par les fournisseurs de cloud tels qu’Azure

          Acquérir une compréhension des différentes structures, approches de modélisation et conceptions de Data Warehouses utilisées pour stocker, gérer et accéder au Big Data.

          Appliquer des outils et des techniques pour nettoyer les données en vue de l’analyse.

          Construire des solutions de reporting et d’analyse basées sur des données sur site et dans le Cloud.

          Intégrer des solutions d’analyse de données à un Data Warehouse

          Atténuer les risques de sécurité des données et assurer la confidentialité des données

Excel vers Power BI

Exporter un fichier Excel vers Power BI est une connaissance essentielle aux Data Analysts qui souhaitent apprendre des techniques pour préparer des données dans Excel, puis les visualiser dans Power BI. Ainsi, ils pourront :

          Comprendre les principes de l’analyse des données, les objectifs de l’analyse des données et les approches de l’analyse des données

          Utiliser les formules DAX dans Power BI pour des calculs complexes

          Mettre en place des visualisations et des graphiques pour des cas d’analyse particuliers

Microsoft Azure
Dossier

Pourquoi se former à Microsoft Azure ?

Azure est un service de Cloud Computing par abonnement mensuel créé par Microsoft en 2010. Les services Cloud de Microsoft incluent l’hébergement Web, les machines virtuelles, les services d’applications, le stockage de fichiers, la gestion des données, l’analyse et bien plus encore. Ils sont hébergés dans plus de 35 régions de centres de données à travers le monde. Azure propose des solutions de gestion et de traitement du Big Data basées sur le Cloud, notamment l’apprentissage automatique, l’analyse en continu et les services d’IA qui peuvent tous être gérés à partir du portail Azure central.

Obtenir l’un des Azure Certifications est un laissez-passer vers les postes parmi les plus rémunérés. Les organisations de tous horizons tendent progressivement à opter pour le Cloud Computing, une solution économe, sécuritaire, fiable et performante. En ce sens, se former à Microsoft Azure est une opportunité de carrière et une ouverture sur l’avenir du Cloud en entreprise.

Quelles sont les utilisations de Microsoft Azure ?

Azure est un service de Cloud Computing très populaire avec de nombreux produits et applications, ce qui entraîne une forte demande d’employés capables de concevoir, de déployer et de gérer des solutions Azure.

Cloud computing

Pour illustrer son importance, Indeed a répertorié plus de 500 postes Azure disponibles avec des estimations de salaire de 75 000 euros et plus. Les postes incluent Azure Developer, Azure Consultant, Azure Architect, Azure Cloud Administrator, Azure Engineer et plus encore, y compris de nombreux postes chez Microsoft.

Construire sa propre expertise Azure peut considérablement améliorer son CV et optimiser ses chances d’entrer dans le monde passionnant du Cloud Computing.

Quels sont les avantages du Cloud Computing Azure ?

L’apprentissage automatique est un avantage pour l’utilisation des Azure services Cloud dans une entreprise. Azure Machine Learning devient plus intelligent à mesure que les utilisateurs font appel à ses services. La reconnaissance de noms, l’extraction intelligente de fichiers avec un ensemble de mots-clés… font tous partie de l’apprentissage automatique. Les services Cloud avec la Machine Learning récupèrent rapidement les données afin que les entreprises puissent profiter de ce type de service à la demande.

Les machines virtuelles et les réseaux virtuels permettent d’exécuter des tâches de mémoire lourdes. Au lieu d’investir sur des ordinateurs plus importants et plus puissants pour exécuter des tâches, les entreprises font appel à des experts en Azure capables de créer une machine virtuelle qui utilise le Cloud pour exécuter leurs tâches. Ce type d’avantage peut leur permettre d’économiser chaque année de l’argent qui aurait été dépensé en matériel physique.

Un autre avantage des services Cloud est la possibilité d’utiliser des applications mobiles et Office 365 avec Azure. Avec le travail mobile d’aujourd’hui, il est facile d’accéder à des données critiques via des applications mobiles n’importe où et n’importe quand. Ainsi, grâce à l’intégration Azure et des solutions Cloud dans une entreprise, cette dernière s’appuiera moins sur un ordinateur spécifique pour charger des documents.

Qui doit suivre cette formation Azure Certification ?

Le mot « Cloud » a influencé la croissance de la carrière de nombreuses personnes et aujourd’hui experts Azure qui ont été auparavant des développeurs, des administrateurs système, des Ingénieurs de données, des Scientifiques de données et même des responsables informatiques.

Azure devient une compétence indispensable pour les professionnels de l’informatique, car des compétences en matière de Cloud Azure sont précieuses pour une entreprise cherchant à analyser, évaluer, gérer, adapter et optimiser l’offre et le coût de l’infrastructure informatique.

Étant donné que Microsoft Azure est open source, hybride et sécurisé, il propose une plate-forme Cloud en constante expansion qui dispose d’un réseau mondial massif pour les futures activités d’une organisation.

Une formation certifiante Mastering Microsoft Azure, permettant aux candidats de passer le Microsoft Certification Exam, est destinée aux professionnels de l’informatique qui veulent poursuivre une carrière dans le Cloud Computing et devenir Microsoft Azure Developer Specialist. Elle convient parfaitement aux :

          Professionnels de l’informatique

          Développeurs d’applications

          Data Engineers

          Data Scientists

          Solutions architect

          Ingénieurs DevOps

Quels sont les postes proposés par les entreprises aux professionnels Azure ?

Le développement d’applications basées sur le Cloud se développe à un rythme rapide. Les compétences et l’expérience d’Azure peuvent aider ceux qui suivent une formation Azure à s’orienter vers une carrière lucrative.

Open space bureau de travail

Certains des postes proposés par les entreprises pour les professionnels Azure sont :

          Développeur d’applications Cloud : se concentre principalement sur la mise en œuvre et la maintenance de l’infrastructure Cloud d’une organisation

          Cloud Architect: responsable de la gestion de l’architecture du Cloud Computing dans une organisation

          Ingénieur infrastructure Cloud Automation : se concentre sur l’automatisation, l’orchestration et l’intégration du Cloud

          Ingénieur Cloud système réseaux : responsable de la mise en œuvre, de la maintenance et de la prise en charge du matériel réseau, des logiciels et des liens de communication de l’infrastructure Cloud de l’organisation

Quelle est la future portée de la formation Azure ?

Microsoft Azure est une plate-forme de Cloud Computing publique qui propose de la rapidité en réduisant le temps de chargement grâce à Azure Content Delivery Network. Il s’agit d’un atout qui attire de plus en plus d’entreprises à faire appel à ses solutions telles que l’infrastructure en tant que service, le logiciel en tant que service et une plate-forme en tant que service. Ils peuvent être utilisés efficacement pour des services tels que l’analyse, la mise en réseau, le stockage, l’informatique virtuelle et bien d’autres services.

La portée future d’Azure semble assez prometteuse si elle est vue du point de vue de l’investissement. En mars 2021, Microsoft a investi 200 millions de dollars à proximité de la ville de Chicago. Ce sera un complexe de 11 data centers qui s’étendront sur 21 hectares. Ils seront opérationnels en 2022 pour répondre à la hausse de la demande.

Pourquoi suivre une formation Azure ?

Le Cloud Microsoft Azure connaît une croissance exponentielle. Selon le rapport Microsoft, 57 % des entreprises du Fortune 500 utilisent le Cloud Azure. En 2020, la hausse des revenus générés par Microsoft Azure a été projetée à 57,6 %. Et malgré la pandémie de Covid19, elle a tout de même été à 29 %.

Microsoft Azure est énorme. Il y a eu une croissance de 50 % de ses revenus pour l’année 2021. En tout, cette plateforme de Cloud Computing a généré près de 15,1 milliards de dollars de chiffre d’affaires.

Quels sont les cours généralement dispensés dans une formation Azure (Learning Path) ?

D’un établissement à un autre, une formation Azure est généralement la même. Ci-dessous une liste non exhaustive des cours :

          Fondamentaux de Microsoft Azure (Course)

          Analyse de données avec Microsoft Azure

          Technologies de sécurité Microsoft Azure

          Développement de solutions pour Microsoft Azure

          Conception et mise en œuvre de solutions Microsoft DevOps

          Ingénierie des données sur Microsoft Azure

          Administration de bases de données relationnelles sur Microsoft Azure

          Migration des charges de travail SQL vers Azure

          Migration des charges de travail NoSQL vers Azure Cosmos DB

          Implémentation des solutions Microsoft Azure Cosmos DB

          Migration des charges de travail d’application vers Azure

Code sur écran d'ordinateur
Définitions

Qu’est-ce que la Data Science ? À quoi sert-elle ? Pourquoi est-elle importante aujourd’hui ?

Il y a beaucoup de discussions sur ce qu’est la Data Science ou Science des données. Mais, nous pouvons la résumer par la phrase suivante : « La Data Science est la discipline du 21e siècle qui convertit les données en connaissances utiles ».

La Data Science combine plusieurs domaines, dont les statistiques, les méthodes scientifiques (scientific methods) et l’analyse des données (analyzing data). Elle permet d’extraire de la valeur dans les données, de la collecte de celles-ci (Data Collections) à l’analyse prédictive (Predictive Analytics) en passant par la présentation des résultats (Data Visualization). Le praticien de la Science des données est le Data Scientist qui travaille de près avec d’autres experts du Big Data tels que le Data Analyst et le Data Engineer (Data Science Team).

Qu’est-ce que la Data Science ?

En termes simples, la Science des données consiste à appliquer l’analyse prédictive pour tirer le meilleur parti des informations d’une entreprise. Il ne s’agit pas d’un produit, mais d’un ensemble d’outils (parfois Open source) et de techniques interdisciplinaires intégrant les statistiques (statistical analysis et statistical modeling), l’informatique (computer science) et les technologies de pointe (Artificial Intelligence AI et Machine Learning models) qui aident le Data Scientist à transformer les données en informations stratégiques (actionable insights).

La plupart des entreprises sont aujourd’hui submergées de données et ne les utilisent probablement pas à leur plein potentiel. C’est là qu’intervient le Data Scientist qui met à leur service ses compétences uniques en matière de Science des données pour les aider à transformer les informations en données stratégiques significatives et en véritable avantage concurrentiel (Data Driven Marketing).

En appliquant la Data Science, une organisation peut prendre des décisions en toute confiance et agir en conséquence, car elle travaille avec des faits et la méthode scientifique, plutôt qu’avec des intuitions et des suppositions.

Que font exactement les Data Scientists ?

Statistiques sur papier

Les Data Scientists sont des experts dans trois groupes de disciplines :

          Les statistiques et les mathématiques appliquées

          L’informatique

          L’expertise commerciale

Si les Scientifiques des données peuvent avoir une expertise en physique, en ingénierie, en mathématiques et dans d’autres domaines techniques ou scientifiques, ils doivent également comprendre les objectifs stratégiques de l’entreprise pour laquelle ils travaillent afin d’offrir de réels avantages commerciaux.

Le travail quotidien d’un Data Scientist consiste à :

          Définir un problème ou une opportunité commerciale

          Gérer et à analyser toutes les données pertinentes pour le problème

          Construire et tester des modèles pour fournir des aperçus et des prédictions

          Présenter les résultats aux parties prenantes de l’entreprise

          Écrire du code informatique pour exécuter la solution choisie

Lorsqu’il fait du codage, il applique ses connaissances d’une combinaison de langages utilisés pour la gestion des données et l’analyse prédictive tels que Python, R, SAS et SQL/PostgreSQL.

Enfin, le Data Scientist est également chargé d’analyser et de communiquer les résultats commerciaux réels.

En raison du grand nombre de compétences spécifiques impliquées, les scientifiques de données qualifiés sont difficiles à identifier et à recruter. En outre, leur maintien au sein d’une équipe interne est coûteux pour une organisation.

Pourquoi la Data Science est-elle soudainement si importante ?

La théorie mathématique et statistique qui sous-tend la Data Science est importante depuis des décennies. Mais, les tendances technologiques récentes ont permis la mise en œuvre industrielle de ce qui n’était auparavant que de la théorie. Ces tendances font naître un nouveau niveau de demande pour la Science des données et un niveau d’excitation sans précédent quant à ce qu’elle peut accomplir :

          L’essor du Big Data et de l’Internet des objets (IoT)

La transformation numérique du monde des affaires a donné lieu à une énorme quantité de données (amounts of data) et différents jeux de données (data sets) sur les clients, les concurrents, les tendances du marché et d’autres facteurs clés. Comme ces données proviennent de nombreuses sources et peuvent être non structurées, leur gestion est un défi. Il est difficile, voire impossible pour les groupes internes (analystes d’entreprise traditionnels et équipes informatiques travaillant avec les systèmes existants) de gérer et d’appliquer cette technologie par eux-mêmes.

          La nouvelle accessibilité de l’Intelligence artificielle (IA)

L’Artificial Intelligence (Intelligence artificielle) et la Machine Learning (apprentissage automatique) qui relevaient autrefois de la science-fiction sont désormais monnaie courante et arrivent juste à temps pour relever le défi du Big Data. Le volume, la variété et la vitesse des données ayant augmenté de manière exponentielle, la capacité à détecter des modèles et à faire des prédictions dépasse la capacité de la cognition humaine et des techniques statistiques traditionnelles. Aujourd’hui, l’Intelligence artificielle et l’apprentissage automatique sont nécessaires pour effectuer des tâches robustes de classification, d’analyse et de prédiction des données.

          Les gains énormes en puissance de calcul

La Data Science ne serait pas possible sans les récentes améliorations majeures de la puissance de calcul. Une percée cruciale a été de découvrir que les processeurs informatiques conçus pour restituer des images dans les jeux vidéos seraient également adaptés aux applications d’apprentissage automatique et d’Intelligence artificielle. Ces puces informatiques avancées sont capables de gérer des algorithmes mathématiques et statistiques extrêmement sophistiqués et fournissent des résultats rapides même pour les défis les plus complexes, ce qui les rend idéales pour les applications de science des données.

          Nouvelles techniques de stockage des données, y compris l’informatique dématérialisée

La Data Science dépend d’une capacité accrue à stocker des données de toutes sortes à un coût raisonnable. Les entreprises peuvent désormais stocker raisonnablement des pétaoctets (ou des millions de gigaoctets) de données, qu’elles soient internes ou externes, structurées ou non structurées, grâce à une combinaison hybride de stockage sur site et en nuage.

          Intégration de systèmes

La Data Science met en relation toutes les parties de votre organisation. Une intégration étroite et rapide des systèmes est donc essentielle. Les technologies et systèmes conçus pour déplacer les données en temps réel doivent s’intégrer de manière transparente aux capacités de modélisation automatisée qui exploitent les algorithmes de Machine Learning pour prédire un résultat. Les résultats doivent ensuite être communiqués aux applications en contact avec la clientèle, avec peu ou pas de latence, afin d’en tirer un avantage.

Quels avantages une entreprise peut-elle tirer de la Data Science ?

Réunion business

La Data Science peut offrir un large éventail de résultats financiers et d’avantages stratégiques, en fonction du type d’entreprise, de ses défis spécifiques et de ses objectifs stratégiques.

Par exemple, une société de services publics pourrait optimiser un réseau intelligent pour réduire la consommation d’énergie en s’appuyant sur des modèles d’utilisation et de coûts en temps réel. Un détaillant pourrait appliquer la Science des données aux informations du point de vente pour prédire les achats futurs et sélectionner des produits personnalisés.

Les constructeurs automobiles utilisent activement la Data Science pour recueillir des informations sur la conduite dans le monde réel et développer des systèmes autonomes grâce à la Machine Learning. Les fabricants industriels utilisent la Science des données pour réduire les déchets et augmenter le temps de fonctionnement des équipements.

Dans l’ensemble, la Data Science et l’Intelligence artificielle sont à l’origine des avancées en matière d’analyse de texte, de reconnaissance d’images et de traitement du langage naturel qui stimulent les innovations dans tous les secteurs.

La Science des données peut améliorer de manière significative les performances dans presque tous les domaines d’une entreprise de ces manières, entre autres :

          Optimisation de la chaîne d’approvisionnement

          Augmentation de la rétention des employés

          Compréhension et satisfaction des besoins des clients

          Prévision avec précision des paramètres commerciaux

          Suivi et amélioration de la conception et des performances des produits.

La question n’est pas de savoir ce que la Data Science peut faire. Une question plus juste serait de savoir ce qu’il ne peut pas faire. Une entreprise dispose déjà d’énormes volumes d’informations stockées ainsi que d’un accès à des flux de données externes essentiels. La Science des données peut tirer parti de toutes ces informations pour améliorer pratiquement tous les aspects des performances d’une organisation, y compris ses résultats financiers à long terme.

Quel est l’avenir de la Data Science ?

La Data Science est de plus en plus automatisée et le rythme de l’automatisation va sûrement se poursuivre.

Historiquement, les statisticiens devaient concevoir et ajuster les modèles statistiques manuellement sur une longue période, en utilisant une combinaison d’expertise statistique et de créativité humaine. Mais aujourd’hui, alors que les volumes de données et la complexité des problèmes d’entreprise augmentent, ce type de tâche est si complexe qu’il doit être traité par l’Intelligence artificielle, l’apprentissage automatique et l’automatisation. Cette tendance se poursuivra à mesure que le Big Data prendra de l’ampleur.

L’Intelligence artificielle et l’apprentissage automatique sont souvent associés à l’élimination des travailleurs humains. Mais, ils ne font en réalité qu’accroître l’essor des Citizen Data Scientists, ces professionnels de la Data Science sans formation formelle en mathématiques et statistiques.

En conclusion, rien n’indique que l’automatisation remplacera les spécialistes des données, les ingénieurs de données et les professionnels des DataOps qualifiés. Il faut autant de créativité humaine que possible à différentes étapes pour tirer parti de toute la puissance de l’automatisation et de l’Intelligence artificielle.

Image ordinateur sur canapé
Conseils

Devenir Data Scientist freelance

Depuis ces dernières années, les Data Scientist sont très recherchés par les entreprises. Ces professionnels travaillent avec d’importantes quantités de données ou Big Data. Leur rôle est de faire un croisement entre les données, les traiter et en déduire des conclusions qui permettent aux dirigeants de l’entreprise de prendre des décisions stratégiques en adéquation avec leurs objectifs.

En ce sens, un Data Scientist est un expert indispensable pour toute organisation qui souhaite se développer en anticipant les choix de ses clients grâce à une analyse des données les concernant.

Aujourd’hui, il s’agit d’un des métiers du Big Data (Data Analyst, Data Engineer…), dont la rémunération est l’une des plus élevées. Par considération de l’engouement des entreprises pour les compétences et l’expérience en Data Science, beaucoup se ruent pour décrocher un poste. Cependant, certains trouvent l’idée de devenir un Scientifique des données en freelance plus intéressant.

Le Data Scientist indépendant

Le Data Scientist connaît par cœur ce qu’est de gérer et d’analyser d’importantes quantités de données dans le genre du Big Data. Sa principale tâche est d’identifier des éléments grâce à l’analyse de données, et surtout le traitement de données qu’il a préalablement effectué pour la mise en place d’une stratégie apportant une solution à un problème.

Un freelance Data Scientist est donc un professionnel de la science des données en mission freelance. Tout comme un Scientifique des données en CDI dans une entreprise, il connaît tout ce qu’il faut faire avec le Big Data. Il anticipe les besoins de l’entreprise pour affronter ceux de ses clients.

Pour ce faire, il va :

          Déterminer les besoins de l’entreprise après exploration, analyse et traitement des données

          Conseiller les parties prenantes et les équipes par rapport à ces besoins

          Construire un modèle statistique

          Mettre au point des outils d’analyse pour la collecte de données

          Référencer et structurer les sources de données

          Structurer et faire la synthèse de ces sources

          Tirer parti des informations tirées des résultats

          Construire des modèles prédictifs

Compétences pour devenir Data Scientist freelance

Abaque multicolor

Pour devenir Data Scientist indépendant, il faut bien évidemment avoir les compétences d’un Scientifique de données, à savoir :

  •         Fondamentaux de la science des données
  •         Statistiques
  •         Connaissances en programmation (Python, R, SQL, Scala)
  •         Manipulation et analyse des données
  •         Visualisation de données
  •         Apprentissage automatique (Machine Learning)
  •         Apprentissage en profondeur (Deep Learning)
  •         Big Data
  •         Génie logiciel
  •         Déploiement du modèle
  •         Compétences en communication
  •         Compétences en narration
  •         Pensée structurée
  •         Curiosité
  •         Anglais

Devenir un Data Scientist, que ce soit en interne (dans une entreprise) ou en indépendant, il est nécessaire de suivre une formation spécifique à la Data Science avec ou sans aucune base sur les mathématiques et les statistiques.

En effet, la Science des données nécessite des connaissances en mathématiques, en statistique et en donnée informatique, et d’une certaine manière, en marketing. Être un Data Scientist, c’est devenir un expert dans la Data Science capable d’analyser les données dans le respect de la politique de confidentialité. Il en tire ensuite des informations précieuses permettant d’apporter des réponses aux problèmes actuels et des solutions aux besoins futurs.

Conditions pour devenir Data Scientist indépendant

Une fois que la certitude de pouvoir se lancer en freelance et d’assumer une variété de tâches est présente, il est possible de commencer à penser à passer dans l’environnement indépendant. Voici quelques éléments indispensables pour se lancer :

Expérience dans une variété de missions

Cette expérience peut résulter des études, d’une carrière en entreprise ou même d’un bénévolat. Pour un débutant, l’idéal est de proposer un service de consultant dans une entreprise locale pour acquérir de l’expérience tout en explorant ce qu’il faut pour être un freelance. Mais, il est essentiel d’avoir une expérience bien enrichie pour démontrer qu’une entreprise est très intéressée (ex : chef de projet data).

Portfolio des réalisations

Il est essentiel d’avoir un portfolio qui démontre le niveau de compétence. Cela devrait inclure plusieurs types de projets différents qui mettent en valeur la capacité à effectuer plusieurs types de travail tels que le développement et le test de diverses hypothèses, le nettoyage et l’analyse des données et l’explication de la valeur des résultats finaux.

Support du portfolio

Étant donné que l’un des avantages d’être indépendant est la possibilité de travailler à distance, il y a de fortes chances de décrocher un emploi à distance. Cela signifie que le premier contact avec des clients potentiels sera probablement en ligne. Un bon moyen de présenter les travaux déjà réalisés est de créer un site Web personnel afin de rendre le portfolio facile à parcourir. Il est important d’afficher clairement les moyens de contact.

S’inscrire sur une plateforme de recrutement en ligne

Un Data Scientist indépendant utilise généralement une plateforme en ligne ou un annuaire indépendant pour trouver du travail. Il y en a beaucoup où les entreprises publient des offres d’emploi et les freelances se vendent, ou où les entreprises contactent des freelances avec un projet data en tête.

Avoir de l’initiative pour trouver du travail

Bien que les plateformes de recrutement offrent la possibilité de soumissionner pour des emplois, un Data Scientist en freelance peut également sortir des sentiers battus dans la recherche d’un travail précieux et agréable. Il faut ne pas parfois chercher loin et penser « local » comme des entrepreneurs ou des start-ups qui pourraient bénéficier de compétences en Data Science.

Être leader dans son domaine

Au fur et à mesure que la situation d’indépendant prend de l’ampleur, il est important de mettre en valeur les connaissances et les compétences techniques dans le domaine de la Science des données. Par exemple, il est très vendeur d’être actif sur les forums en ligne pour les Data Scientists ou d’écrire des blogs ou des articles de leadership éclairé pour le site Web personnel. Les employeurs prendront note de ses connaissances, de cette perspicacité et de cette volonté de se démarquer lorsqu’ils recherchent un Data Scientist indépendant.

Avoir la volonté d’apprendre continuellement

Être dans un domaine nouveau et passionnant signifie qu’il faut être ouvert à tous et apprendre davantage sur la Data Science pour répondre aux besoins des futurs clients et plus encore. En ce sens, il ne faut pas hésiter à s’accorder du temps et les ressources nécessaires pour le perfectionnement professionnel comme la formation technique.

Pourquoi devenir Data Scientist indépendant ?

Statistiques sur ordinateur

Maintenant que certaines des étapes clés à suivre sont connues, il est possible de se lancer dans une carrière de Data Scientist indépendant. Cependant, beaucoup se demandent pourquoi devenir un Scientifique des données en freelance.

Après tout, partir seul peut être un parcours intimidant. Il peut être effrayant de se demander où trouver du travail et si on gagne assez d’argent pour que cela en vaille la peine.

Si la présence d’un employeur, de collaborateurs et d’un lieu de travail n’est pas si importante, le statut d’indépendant est intéressant pour un Data Scientist. Voici quelques bonnes raisons de se lancer dans une carrière de freelance.

La place du marché

Le marché du travail indépendant en général a augmenté pour diverses raisons. Les employeurs sont de plus en plus à l’aise avec une main-d’œuvre distante et sont plus ouverts à l’embauche d’entrepreneurs plutôt que d’employés. Le marché des Data Scientists a également augmenté. Les entreprises comprennent de plus en plus la valeur de la Science des données et souhaitent que les efforts créatifs les aident à fournir des analyses et à traduire les informations en idées.

La flexibilité

En tant qu’indépendant, un Data Scientist travaille selon un horaire de travail flexible. Parfois, il doit travailler le week-end pour accélérer un projet. Mais parfois, il peut prendre un après-midi pour se reposer ou faire autre chose. C’est un réel avantage pour beaucoup. La flexibilité de travailler à distance, de n’importe où, est aussi un autre avantage d’être en freelance.

La diversité du travail

Il existe des profils de personnes qui aiment travailler sur une variété de projets pour une variété de clients. Une carrière de Data Scientist indépendant peut être dans ce cas le choix idéal.

Conseils

La data science : un booster du conseil en stratégie

La transformation digitale des entreprises est en marche ! Ce terme qui englobe tous les changements liés à l’intégration de nouvelles technologies dans la société contient le Big Data comme l’un de ses piliers les plus solides. Pour les entreprises, l’explosion des « grosses données » est au cœur des problématiques actuelles qu’elles doivent affronter. Cela nécessite la création de moyens efficaces pour les recevoir et les utiliser au mieux, permise par des professionnels aguerris des Data Sciences. 

Les cabinets de conseil en stratégie sont des acteurs majeurs dans cette digitalisation de l’entreprise. Ils accompagnent les autres entreprises dans leur stratégie de transformation digitale, soit en tant que cabinets spécialisés, soit pour les cabinets généralistes en intégrant un segment dédié à leur offre d’expertise. Mais ils sont eux-mêmes sujets de cette transformation digitale et doivent intégrer de nouvelles compétences à leur cœur de métiers pour des propositions à plus forte valeur ajoutée.   

Pourquoi intégrer les Data Sciences au conseil en stratégie ? 

Aujourd’hui, la Data Science, ou science des données est utilisée par les entreprises comme outil d’analyse pour aider à la décision. Et plus il y a de données, plus le recours aux spécialistes de la data science est indispensable. 

Le cas des cabinets de conseils en stratégie en est le parfait exemple. Ces derniers ont comme mission de répondre à une problématique précise pour le compte de leurs clients. L’expertise attendue d’eux repose sur la conduite de recherches et d’analyses stratégiques à partir de données fournies directement par les clients ou de données externes. Opérant sur une grande variété de secteurs, ils stockent donc un nombre de données très important. 

Mais si les data sont historiquement au cœur du métier de consultant, les temps changent et les technologies avec. Pour fournir la meilleure analyse possible et garder un avantage concurrentiel, les cabinets se doivent d’évoluer au rythme de ces avancées. L’amélioration du CRM grâce à la personnalisation de la relation client, l’optimisation et la prédiction des coûts, la sécurisation et la détection de fraude, la vérification de l’authenticité de produits… sont tant d’exemples permis aujourd’hui par des méthodes et algorithmes très poussés au centre des outils utilisés dans les Data Sciences. 

L’utilisation des Data Sciences intervient à chaque niveau de la chaine de valeur ; du début de la réflexion à la solution fournie au client en passant par le suivi. La conjoncture des 3 V qui définissent les Big Data – Volume, Vélocité, Variété – permet de mieux répondre aux due diligences et en un temps plus restreint.

C’est dans cette optique que le BCG a vu naître sa nouvelle entité dédiée à la Data Science : BCG Gamma. Avec Cedric Villani (médaille Fields 2010) comme conseiller scientifique, et l’INRIA (l’institut national de recherche en sciences du numérique) comme partenaire, le message porté par cette initiative est clair : mêler la recherche au monde de l’entreprise pour améliorer les performances. L’équipe est composée de 250 personnes : des experts scientifiques maitrisant les techniques mathématiques et statistiques liées à l’intelligence artificielle, au machine et deep learning, mais également des consultants experts dans les secteurs conseillés par le cabinet, concentrés sur l’aspect analytique des données.  

Les profils des data-consultants 

S’ils étaient absents du monde du conseil il y a encore 5 ans, les Data Sciences y sont aujourd’hui indispensables. Le recours à cette nouvelle science ne se fait plus seulement à travers l’utilisation ponctuelle de l’expertise d’acteurs de la tech dans le cadre de partenariats. Aujourd’hui, les Data Scientists arrivent au sein même des cabinets de conseils. Et demain, ils se mêleront à part entière aux consultants.

Chez ces férus d’informatique et de nouvelles technologies, les nouvelles façons de s’intégrer aux grands cabinets de conseil sont multiples. Toutefois, deux grandes tendances dominent : (1) être une fonction support (2) être un consultant à part entière.

L’équipe BCG Gamma réunit des doubles profils « consultants-data scientists » autour des problématiques classiques du grand groupe de conseil dans les différents secteurs où il opère. Ils sont pleinement intégrés au groupe et ont le même objectif final que tout consultant : conseiller le client en lui apportant une expertise poussée. Mais le moyen pour y parvenir diffère : « Là où un consultant utilisera Excel pour créer un modèle d’analyse, nous avons recours à des algorithmes pour modéliser des volumes de données plus complexes » (Thomas Lewiner, BCG Gamma). Aussi, à la différence du consultant type, les consultants « geeks » n’ont pas suivi un parcours en école de commerce ou d’ingénieur, mais des formations dédiées aux data sciences, en informatique, allant parfois jusqu’au doctorat (46%). Ces consultants s’inscrivent pleinement dans la transformation digitale des entreprises par leur utilisation des Data Sciences qui accélèrent et optimisent l’arrivée vers le résultat voulu.  

Dans d’autres cabinets, les data scientists ne sont pas consultants mais forment une équipe bien distincte dont la vocation unique est de gérer les données. 

C’est par exemple le cas de PMP ou d’EY qui se sont dotés en 2016 de leurs « Data Lab » ou « EY Digital Lab », choisissant de s’inscrire pleinement dans l’ère de la transformation digitale sans dénaturer la fonction de consultant.  Ces deux laboratoires de la donnée ont comme rôle d’assurer une fonction support pour les différentes entités des groupes. Les talents de ces laboratoires s’occupent de traiter et gérer les données avant que les consultants ne les analysent pour en fournir une interprétation. 

L’enjeu est de taille pour ces data scientists, car s’ils exercent leur métier sans se confondre aux consultants, ils doivent bien s’adapter à ces derniers. Pour générer un gain de temps grâce au Big Data, ils doivent donc parvenir à vulgariser leur langage afin qu’il soit exploitable au maximum et parfaitement intégré dans la chaine de valeur.

data-scientist-data-analyst
Dossier

Data Scientist vs Data Analyst : Quelle est la différence ?

De nombreuses divergences d’opinions subsistent concernant les rôles et les compétences autour du Big Data. Cela crée beaucoup de confusions. Par conséquent, beaucoup se posent cette question : qu’est-ce qui distingue un data scientist d’un data analyst ?

De nombreux non-initiés à la data science ont une perception du data scientist comme étant juste un terme enjolivé pour définir le data analyst.

Une raison importante de cette imprécision est le fait que certaines entreprises aient plusieurs façons de définir le rôle de chacun de ces experts. Dans la pratique, les titres des métiers ne reflètent pas toujours fidèlement les activités et responsabilités réelles de chacun. Par exemple, il existe des start-ups qui usent du titre de « data scientist » sur des descriptions de poste plutôt destinées à des data analysts.

En outre, la science des données est un domaine qui n’est qu’à ses balbutiements. Les gens connaissent encore très peu de choses concernant son fonctionnement interne. Ainsi, s’il faut comprendre la différence entre un data analyst et un data scientist, il est tout d’abord important de faire un retour sur l’activité et le rôle de chacun d’eux.

Que fait un data analyst ?

Au quotidien, un data analyst collecte des données, les organise et les utilise pour tirer des conclusions pertinentes. La majorité des entreprises de tous les secteurs peuvent nécessiter et bénéficier du travail d’un data analyst. Il peut s’agir des prestataires de soins de santé ou des magasins de détail. Les analystes de données passent leur temps à développer de nouveaux processus et systèmes pour collecter des données et compiler leurs conclusions pour améliorer les affaires.

Le métier de data analyst consiste à fournir des rapports, examiner les modèles et collaborer avec les parties prenantes dans une organisation. Dans cette tâche, l’un de ses rôles consiste à collaborer avec plusieurs services d’une entreprise, y compris avec les experts en marketing. Il se joint également à ses pairs qui travaillent sur des données comme les développeurs de bases de données et les architectes de données.

Il doit également consolider les données et mettre en place une structure qui permette de les utiliser. C’est l’aspect le plus technique de son rôle, car il consiste à collecter les données elles-mêmes. En effet, il s’agit de la clé du travail des analystes de données. Ils travaillent pour visualiser, analyser et examiner les modèles, les erreurs et les particularités des données afin qu’elles aient de la valeur et puissent être utilisées dans plusieurs domaines.

Suivre une formation Data Analyst

data-analyst-data-scientist

Que fait un data scientist ?

Le data scientist est un innovateur en matière d’apprentissage automatique. Contrairement au data analyst, les problèmes ne sont pas soumis au data scientist avec des questions clairement formulées par les parties prenantes de l’entreprise, mais plutôt avec des questions qui sont déterminées par des approches plus techniques. La solution est développée à l’aide d’un large répertoire de méthodes statistiques basées à la fois sur des données structurées et non structurées. Il n’est pas toujours nécessaire que ces données soient déjà disponibles dans l’entreprise et enregistrées de manière bien structurée.

En effet, le data scientist doit acquérir des connaissances en utilisant des données, c’est-à-dire, il analyse les données dans le but de soutenir d’autres départements. Cela lui implique d’utiliser une gamme d’outils tels que Python pour les langages de programmation de ses algorithmes d’apprentissage automatique, des outils d’exploration de données et même des services cloud scientist qualifié doit être capable de faire beaucoup ou au moins être suffisamment flexible pour s’y habituer rapidement.

Ses besoins en infrastructure d’acquisition, de stockage et d’analyse sont par conséquent plus élevés. En plus des données non structurées, les données volumineuses du Big Data sont également enregistrées et analysées. Cela va généralement au-delà des systèmes traditionnels d’entreposage de données et nécessite de nouvelles approches telles qu’un data lake.

Comparaison des compétences d’un data analyst vs data scientist

Les tâches des data analysts et des data scientist se chevauchent à bien des égards. Cela est en partie dû au fait que tout le domaine professionnel autour du Big Data se développe rapidement et que de nouveaux titres de poste émergent constamment sans pour autant être définis de manière uniforme.

Mais, outre ces quelques similitudes, des différences importantes sont à noter et peuvent être résumées sous les trois questions suivantes :

Qui pose les questions ?

Un data scientist formule les questions pour l’entreprise auxquelles il souhaite répondre avec sa base de données. Un data analyst est en revanche chargé par d’autres équipes de l’entreprise de rechercher une solution à leurs questions.

Quel niveau d’étude pour commencer ?

Un data analyst peut commencer sa carrière avec un baccalauréat à composante scientifique . Un master est généralement exigé de la part d’un data scientist parce qu’il doit maîtriser les maths statistiques et les technologies de l’information.

Quel rôle joue la machine learning ?

Le data analyst doit maîtriser le langage SQL et Oracle Database tout en sachant utiliser les outils de veille stratégique tels que Power BI et de visualisation de données comme Shiny et Google Analytics. De son côté, le data scientist développe ses propres modèles d’apprentissage automatique qui utilisent l’ensemble des données comme base de formation pour apprendre de nouvelles choses. 

deep-learning
Dossier

Deep learning : Qu’est-ce que c’est ? Comment ça marche ? Quelles sont les applications ?

Nous sommes actuellement à un stade où l’on cherche à ce que les machines soient dotées d’une plus grande intelligence, atteignent une pensée autonome et une grande capacité d’apprentissage. Le deep learning ou apprentissage en profondeur est un concept relativement nouveau allant dans cette perspective. Il est étroitement lié à l’intelligence artificielle (IA) et fait partie des approches algorithmiques d’apprentissage automatique.

Qu’est-ce que le deep learning ?

Le deep learning ou apprentissage profond est défini comme un ensemble d’algorithmes qui se compose d’un réseau de neurones artificiels capables d’apprendre, s’inspirant du réseau de neurones du cerveau humain. En ce sens, il est considéré comme un sous-domaine de l’apprentissage automatique. L’apprentissage profond est lié aux modèles de communication d’un cerveau biologique, ce qui lui permet de structurer et de traiter les informations.

L’une des principales caractéristiques de l’apprentissage profond est qu’il permet d’apprendre à différents niveaux d’abstraction. Autrement dit, l’utilisateur peut hiérarchiser les informations en concepts. De même, une cascade de couches de neurones est utilisée pour l’extraction et la transformation des informations.

Le deep learning peut apprendre de deux manières : l’apprentissage supervisé et l’apprentissage non supervisé. Cela permet au processus d’être beaucoup plus rapide et plus précis. Dans certains cas, l’apprentissage profond est connu sous le nom d’apprentissage neuronal profond ou de réseaux neuronaux profonds. En effet, la définition la plus précise est que l’apprentissage profond imite le fonctionnement du cerveau humain.

Grâce à l’ère du Cloud Computing et du Big Data, le deep learning a connu une croissance significative. Avec lui, un haut niveau de précision a été atteint. Et cela a causé tellement d’étonnements, car il se rapproche chaque jour de la puissance perceptive d’un être humain.

Comment fonctionne le deep learning ?

Le deep learning fonctionne grâce à des réseaux de neurones profonds. Il utilise un grand nombre de processeurs fonctionnant en parallèle.

Les réseaux de neurones sont regroupés en trois couches différentes : couche d’entrée, couche cachée et couche de sortie. La première couche, comme son nom l’indique, reçoit les données d’entrée. Ces informations sont transmises aux couches cachées qui effectuent des calculs mathématiques permettant d’établir de nouvelles entrées. Enfin, la couche de sortie est chargée de fournir un résultat.

Mais, les réseaux de neurones ne fonctionnent pas si on ne tient pas compte de deux facteurs. Le premier est qu’il faut beaucoup de puissance de calcul. Le second fait référence au gigantesque volume de données auquel ils doivent accéder pour s’entraîner.

Pour sa part, les réseaux de neurones artificiels peuvent être entraînés à l’aide d’une technique appelée rétropropagation. Elle consiste à modifier les poids des neurones pour qu’ils donnent un résultat exact. En ce sens, ils sont modifiés en fonction de l’erreur obtenue et de la participation de chaque neurone.

deep-learning-apprentissage-profond

Pour son bon fonctionnement, l’utilisation d’un processeur graphique est également importante. Autrement dit, un GPU dédié est utilisé pour le traitement graphique ou les opérations en virgule flottante. Pour traiter un tel processus, l’ordinateur doit être super puissant afin de pouvoir fonctionner avec un minimum de marge d’erreur.

L’apprentissage en profondeur a permis de produire de meilleurs résultats dans les tâches de perception informatique, car il imite les caractéristiques architecturales du système nerveux. En fait, ces avancées peuvent lui permettre d’intégrer des fonctions telles que la mémoire sémantique, l’attention et le raisonnement. L’objectif est que le niveau d’intelligence artificielle soit équivalent au niveau d’intelligence humain, voire le dépasser grâce à l’innovation technologique.

Quelles sont les applications du deep learning dans l’analyse du Big Data ?

Le deep learning dans l’analyse du Big Data est devenu une priorité de la science des données. On peut en effet identifier trois applications.

Indexation sémantique

La recherche d’informations est une tâche clé de l’analyse du Big Data. Le stockage et la récupération efficaces des informations sont un problème croissant. Les données en grande quantité telles que des textes, des images, des vidéos et des fichiers audio sont collectées dans divers domaines. Par conséquent, les stratégies et solutions qui étaient auparavant utilisées pour le stockage et la récupération d’informations sont remises en question par ce volume massif de données.

L’indexation sémantique s’avère être une technique efficace, car elle facilite la découverte et la compréhension des connaissances. Ainsi, les moteurs de recherche ont la capacité de fonctionner plus rapidement et plus efficacement.

Effectuer des tâches discriminantes

Tout en effectuant des tâches discriminantes dans l’analyse du Big Data, les algorithmes d’apprentissage permettent aux utilisateurs d’extraire des fonctionnalités non linéaires compliquées à partir des données brutes. Il facilite également l’utilisation de modèles linéaires pour effectuer des tâches discriminantes en utilisant les caractéristiques extraites en entrée.

Cette approche présente deux avantages. Premièrement, l’extraction de fonctionnalités avec le deep learning ajoute de la non-linéarité à l’analyse des données, associant ainsi étroitement les tâches discriminantes à l’IA. Deuxièmement, l’application de modèles analytiques linéaires sur les fonctionnalités extraites est plus efficace en termes de calcul. Ces deux avantages sont importants pour le Big Data, car ils permettent d’accomplir des tâches complexes comme la reconnaissance faciale dans les images, la compréhension de millions d’images, etc.

Balisage d’images et de vidéos sémantiques

Les mécanismes d’apprentissage profond peuvent faciliter la segmentation et l’annotation des scènes d’images complexes. Le deep learning peut également être utilisé pour la reconnaissance de scènes d’action ainsi que pour le balisage de données vidéo. Il utilise une analyse de la variable indépendante pour apprendre les caractéristiques spatio-temporelles invariantes à partir de données vidéo. Cette approche aide à extraire des fonctionnalités utiles pour effectuer des tâches discriminantes sur des données d’image et vidéo.

Le deep learning a réussi à produire des résultats remarquables dans l’extraction de fonctionnalités utiles. Cependant, il reste encore un travail considérable à faire pour une exploration plus approfondie qui comprend la détermination d’objectifs appropriés dans l’apprentissage de bonnes représentations de données et l’exécution d’autres tâches complexes dans l’analyse du Big Data.

data-science
Dossier

Qu’est-ce que la data science et quelle est son importance ?

La data science ou science des données est une science appliquée. Elle fait appel à des méthodes et des connaissances issues de nombreux domaines tels que les mathématiques, les statistiques et l’informatique, notamment la programmation informatique. Depuis le début de ce millénaire, la data science est une discipline indépendante.

Il existe des cours spécifiques pour la science des données. Les personnes travaillant dans ce domaine sont connues sous le nom de data scientists ou scientifiques des données. Tout mathématicien, informaticien, programmeur, physicien, économiste d’entreprise ou statisticien qui a acquis ses connaissances en se spécialisant dans les tâches de science des données peut devenir un data scientist.

Le but de la data science est de générer des connaissances à partir de données. Dans l’environnement Big Data, la science des données est utilisée pour analyser des ensembles de données en grandes quantités avec l’apprentissage automatique (machine learning) et l’intelligence artificielle (IA). La science des données est utilisée dans diverses industries et domaines spécialisés.

Les objectifs de la data science

Pour faire simple, les objectifs de la data science sont de :

  • Établir un moteur de recommandation à partir des données clients (sur le site, sur les réseaux sociaux…)

Aujourd’hui, les moteurs de recommandation de produits sont capables de rencontrer un client en temps réel. Par exemple, les magasins qui utilisent les recommandations de produits ont la possibilité de personnaliser chacune de leurs pages. Sur chacune d’elles, ils  proposent des offres qui attirent le client de la page d’accueil à la page de paiement.

  • Fournir une aide à la décision

La prise de décision basée sur les données est définie comme l’utilisation de faits, de mesures et de données. Il est ainsi possible de guider les parties prenantes dans une entreprise à prendre des décisions stratégiques. Lorsqu’une organisation tire pleinement parti de la valeur de ses données, tous ceux qui y travaillent ont la capacité de prendre de meilleures décisions.

  • Optimiser et automatiser les processus internes

Les entreprises cherchent constamment à simplifier les tâches. Elles veulent également réduire les coûts. Cela est possible grâce à la data science. Il peut être aussi optimisé afin de gagner en efficacité et en compétitivité.

  • Soutenir les parties prenantes dans la gestion de l’entreprise

Outre l’aide à la prise de décision, la data science permet de recouper des données pertinentes pour apporter des éléments concrets. Sur ces derniers, les différents responsables d’une entreprise pourront baser leurs actions.

  • De développer des modèles prédictifs

Par le biais de l’analyse prédictive, la data science permet de prédire les événements futurs. En règle générale, les données sont utilisées pour créer un modèle mathématique afin de détecter les tendances les plus importantes. Ce modèle prédictif est ensuite appliqué aux données actuelles pour prédire les événements futurs ou suggérer des mesures à prendre pour obtenir des résultats optimaux.

Les disciplines de la science des données

La data science est une science interdisciplinaire qui utilise et applique des connaissances et des méthodes provenant de divers domaines. Les mathématiques et les statistiques constituent l’essentiel de ces connaissances. Ce sont les bases permettant au data scientist d’évaluer les données, de les interpréter, de décrire les faits ou de faire des prévisions. Dans le cadre de l’analyse prédictive, les statistiques inductives sont souvent utilisées en plus d’autres méthodes statistiques pour anticiper les événements futurs.

Un autre groupe de connaissances appliquées dans la science des données est la technologie de l’information et l’informatique. La technologie de l’information fournit des processus et des systèmes techniques de collecte, d’agrégation, de stockage et d’analyse des données. Les éléments importants dans ce domaine sont les bases de données relationnelles, les langages de requête de bases de données structurées tels que SQL (Structured Query Language), le langage de programmation et de script sur des outils tels que Python et bien plus encore.

En plus des connaissances scientifiques spécifiques, la data science accède à ce que l’on appelle la connaissance de l’entreprise (connaissance du domaine ou savoir-faire de l’entreprise). Elle est nécessaire pour comprendre les processus dans une organisation particulière ou une entreprise d’un secteur spécifique. La connaissance du domaine peut concerner des compétences commerciales : marketing de produits et services, savoir-faire logistique, expertise médicale.

data-science-et-big-data

La relation entre le Big Data et la data science

En raison de l’augmentation continuelle des volumes de données à traiter ou à analyser, le terme Big Data s’est imposé. Le Big Data est au cœur du traitement des données. Il concerne les méthodes, procédures, solutions techniques et systèmes informatiques. Ceux-ci sont capables de faire face au flux de données et au traitement de grandes quantités de données sous la forme souhaitée.

Le Big Data est un domaine important de la data science. La science des données fournit des connaissances et des méthodes pour collecter et stocker de nombreuses données structurées ou non structurées (par exemple dans un data lake ou lac de données), les traiter à l’aide de processus automatisés et les analyser. La science des données utilise, entre autres, l’exploration de données ou data mining, l’apprentissage statistique, l’apprentissage automatique (machine learning), l’apprentissage en profondeur (deep learning) et l’intelligence artificielle (IA).

Le rôle du data scientist dans la data science

Les personnes impliquées dans la science des données sont les scientifiques des données ou data scientists. Ils acquièrent leurs compétences soit en suivant une formation en data science, soit en se spécialisant dans le métier de data scientist.

Les scientifiques des données sont souvent des informaticiens, des mathématiciens ou des statisticiens. Ils sont également des programmeurs, des experts en bases de données ou des physiciens qui ont reçu une formation complémentaire en science des données.

En plus des connaissances spécifiques, un data scientist doit être en mesure de présenter clairement les modèles. Il les génère à partir des données et de les rapprocher de divers groupes cibles. Il doit également avoir des compétences appropriées en communication et en présentation. En effet, un data scientist a un rôle de conseiller ou de consultant auprès de la direction d’une entreprise. Les termes data scientist et data analyst sont souvent confondus dans l’environnement d’une entreprise. Parfois, leurs tâches et domaines d’activité se chevauchent.

L’analyste de données effectue une visualisation de données classique et pratique. De son côté, le data scientist poursuit une approche plus scientifique. Pour ce faire, il utilise des méthodes sophistiquées comme l’utilisation de l’intelligence artificielle ou de l’apprentissage automatique et des techniques avancées d’analyse et de prédiction.

Domaines d’application de la data science

Il n’y a pratiquement pas de limites aux applications possibles de la science des données. L’utilisation de la data science est logique partout où de grandes quantités de données sont générées et que des décisions doivent être prises sur la base de ces données.  La science des données est d’une grande importance dans certains entreprises et activités : santé, logistique, vente au détail en ligne et en magasin, assurance, finance, industrie et manufacturing.