Browsing Category

Dossier

data-scientist-data-analyst
Dossier

Data Scientist vs Data Analyst : Quelle est la différence ?

De nombreuses divergences d’opinions subsistent concernant les rôles et les compétences autour du Big Data. Cela crée beaucoup de confusions. Par conséquent, beaucoup se posent cette question : qu’est-ce qui distingue un data scientist d’un data analyst ?

De nombreux non-initiés à la data science ont une perception du data scientist comme étant juste un terme enjolivé pour définir le data analyst.

Une raison importante de cette imprécision est le fait que certaines entreprises aient plusieurs façons de définir le rôle de chacun de ces experts. Dans la pratique, les titres des métiers ne reflètent pas toujours fidèlement les activités et responsabilités réelles de chacun. Par exemple, il existe des start-ups qui usent du titre de « data scientist » sur des descriptions de poste plutôt destinées à des data analysts.

En outre, la science des données est un domaine qui n’est qu’à ses balbutiements. Les gens connaissent encore très peu de choses concernant son fonctionnement interne. Ainsi, s’il faut comprendre la différence entre un data analyst et un data scientist, il est tout d’abord important de faire un retour sur l’activité et le rôle de chacun d’eux.

Que fait un data analyst ?

Au quotidien, un data analyst collecte des données, les organise et les utilise pour tirer des conclusions pertinentes. La majorité des entreprises de tous les secteurs peuvent nécessiter et bénéficier du travail d’un data analyst. Il peut s’agir des prestataires de soins de santé ou des magasins de détail. Les analystes de données passent leur temps à développer de nouveaux processus et systèmes pour collecter des données et compiler leurs conclusions pour améliorer les affaires.

Le métier de data analyst consiste à fournir des rapports, examiner les modèles et collaborer avec les parties prenantes dans une organisation. Dans cette tâche, l’un de ses rôles consiste à collaborer avec plusieurs services d’une entreprise, y compris avec les experts en marketing. Il se joint également à ses pairs qui travaillent sur des données comme les développeurs de bases de données et les architectes de données.

Il doit également consolider les données et mettre en place une structure qui permette de les utiliser. C’est l’aspect le plus technique de son rôle, car il consiste à collecter les données elles-mêmes. En effet, il s’agit de la clé du travail des analystes de données. Ils travaillent pour visualiser, analyser et examiner les modèles, les erreurs et les particularités des données afin qu’elles aient de la valeur et puissent être utilisées dans plusieurs domaines.

Suivre une formation Data Analyst

data-analyst-data-scientist

Que fait un data scientist ?

Le data scientist est un innovateur en matière d’apprentissage automatique. Contrairement au data analyst, les problèmes ne sont pas soumis au data scientist avec des questions clairement formulées par les parties prenantes de l’entreprise, mais plutôt avec des questions qui sont déterminées par des approches plus techniques. La solution est développée à l’aide d’un large répertoire de méthodes statistiques basées à la fois sur des données structurées et non structurées. Il n’est pas toujours nécessaire que ces données soient déjà disponibles dans l’entreprise et enregistrées de manière bien structurée.

En effet, le data scientist doit acquérir des connaissances en utilisant des données, c’est-à-dire, il analyse les données dans le but de soutenir d’autres départements. Cela lui implique d’utiliser une gamme d’outils tels que Python pour les langages de programmation de ses algorithmes d’apprentissage automatique, des outils d’exploration de données et même des services cloud scientist qualifié doit être capable de faire beaucoup ou au moins être suffisamment flexible pour s’y habituer rapidement.

Ses besoins en infrastructure d’acquisition, de stockage et d’analyse sont par conséquent plus élevés. En plus des données non structurées, les données volumineuses du Big Data sont également enregistrées et analysées. Cela va généralement au-delà des systèmes traditionnels d’entreposage de données et nécessite de nouvelles approches telles qu’un data lake.

Comparaison des compétences d’un data analyst vs data scientist

Les tâches des data analysts et des data scientist se chevauchent à bien des égards. Cela est en partie dû au fait que tout le domaine professionnel autour du Big Data se développe rapidement et que de nouveaux titres de poste émergent constamment sans pour autant être définis de manière uniforme.

Mais, outre ces quelques similitudes, des différences importantes sont à noter et peuvent être résumées sous les trois questions suivantes :

Qui pose les questions ?

Un data scientist formule les questions pour l’entreprise auxquelles il souhaite répondre avec sa base de données. Un data analyst est en revanche chargé par d’autres équipes de l’entreprise de rechercher une solution à leurs questions.

Quel niveau d’étude pour commencer ?

Un data analyst peut commencer sa carrière avec un baccalauréat à composante scientifique . Un master est généralement exigé de la part d’un data scientist parce qu’il doit maîtriser les maths statistiques et les technologies de l’information.

Quel rôle joue la machine learning ?

Le data analyst doit maîtriser le langage SQL et Oracle Database tout en sachant utiliser les outils de veille stratégique tels que Power BI et de visualisation de données comme Shiny et Google Analytics. De son côté, le data scientist développe ses propres modèles d’apprentissage automatique qui utilisent l’ensemble des données comme base de formation pour apprendre de nouvelles choses. 

deep-learning
Dossier

Deep learning : Qu’est-ce que c’est ? Comment ça marche ? Quelles sont les applications ?

Nous sommes actuellement à un stade où l’on cherche à ce que les machines soient dotées d’une plus grande intelligence, atteignent une pensée autonome et une grande capacité d’apprentissage. Le deep learning ou apprentissage en profondeur est un concept relativement nouveau allant dans cette perspective. Il est étroitement lié à l’intelligence artificielle (IA) et fait partie des approches algorithmiques d’apprentissage automatique.

Qu’est-ce que le deep learning ?

Le deep learning ou apprentissage profond est défini comme un ensemble d’algorithmes qui se compose d’un réseau de neurones artificiels capables d’apprendre, s’inspirant du réseau de neurones du cerveau humain. En ce sens, il est considéré comme un sous-domaine de l’apprentissage automatique. L’apprentissage profond est lié aux modèles de communication d’un cerveau biologique, ce qui lui permet de structurer et de traiter les informations.

L’une des principales caractéristiques de l’apprentissage profond est qu’il permet d’apprendre à différents niveaux d’abstraction. Autrement dit, l’utilisateur peut hiérarchiser les informations en concepts. De même, une cascade de couches de neurones est utilisée pour l’extraction et la transformation des informations.

Le deep learning peut apprendre de deux manières : l’apprentissage supervisé et l’apprentissage non supervisé. Cela permet au processus d’être beaucoup plus rapide et plus précis. Dans certains cas, l’apprentissage profond est connu sous le nom d’apprentissage neuronal profond ou de réseaux neuronaux profonds. En effet, la définition la plus précise est que l’apprentissage profond imite le fonctionnement du cerveau humain.

Grâce à l’ère du Cloud Computing et du Big Data, le deep learning a connu une croissance significative. Avec lui, un haut niveau de précision a été atteint. Et cela a causé tellement d’étonnements, car il se rapproche chaque jour de la puissance perceptive d’un être humain.

Comment fonctionne le deep learning ?

Le deep learning fonctionne grâce à des réseaux de neurones profonds. Il utilise un grand nombre de processeurs fonctionnant en parallèle.

Les réseaux de neurones sont regroupés en trois couches différentes : couche d’entrée, couche cachée et couche de sortie. La première couche, comme son nom l’indique, reçoit les données d’entrée. Ces informations sont transmises aux couches cachées qui effectuent des calculs mathématiques permettant d’établir de nouvelles entrées. Enfin, la couche de sortie est chargée de fournir un résultat.

Mais, les réseaux de neurones ne fonctionnent pas si on ne tient pas compte de deux facteurs. Le premier est qu’il faut beaucoup de puissance de calcul. Le second fait référence au gigantesque volume de données auquel ils doivent accéder pour s’entraîner.

Pour sa part, les réseaux de neurones artificiels peuvent être entraînés à l’aide d’une technique appelée rétropropagation. Elle consiste à modifier les poids des neurones pour qu’ils donnent un résultat exact. En ce sens, ils sont modifiés en fonction de l’erreur obtenue et de la participation de chaque neurone.

deep-learning-apprentissage-profond

Pour son bon fonctionnement, l’utilisation d’un processeur graphique est également importante. Autrement dit, un GPU dédié est utilisé pour le traitement graphique ou les opérations en virgule flottante. Pour traiter un tel processus, l’ordinateur doit être super puissant afin de pouvoir fonctionner avec un minimum de marge d’erreur.

L’apprentissage en profondeur a permis de produire de meilleurs résultats dans les tâches de perception informatique, car il imite les caractéristiques architecturales du système nerveux. En fait, ces avancées peuvent lui permettre d’intégrer des fonctions telles que la mémoire sémantique, l’attention et le raisonnement. L’objectif est que le niveau d’intelligence artificielle soit équivalent au niveau d’intelligence humain, voire le dépasser grâce à l’innovation technologique.

Quelles sont les applications du deep learning dans l’analyse du Big Data ?

Le deep learning dans l’analyse du Big Data est devenu une priorité de la science des données. On peut en effet identifier trois applications.

Indexation sémantique

La recherche d’informations est une tâche clé de l’analyse du Big Data. Le stockage et la récupération efficaces des informations sont un problème croissant. Les données en grande quantité telles que des textes, des images, des vidéos et des fichiers audio sont collectées dans divers domaines. Par conséquent, les stratégies et solutions qui étaient auparavant utilisées pour le stockage et la récupération d’informations sont remises en question par ce volume massif de données.

L’indexation sémantique s’avère être une technique efficace, car elle facilite la découverte et la compréhension des connaissances. Ainsi, les moteurs de recherche ont la capacité de fonctionner plus rapidement et plus efficacement.

Effectuer des tâches discriminantes

Tout en effectuant des tâches discriminantes dans l’analyse du Big Data, les algorithmes d’apprentissage permettent aux utilisateurs d’extraire des fonctionnalités non linéaires compliquées à partir des données brutes. Il facilite également l’utilisation de modèles linéaires pour effectuer des tâches discriminantes en utilisant les caractéristiques extraites en entrée.

Cette approche présente deux avantages. Premièrement, l’extraction de fonctionnalités avec le deep learning ajoute de la non-linéarité à l’analyse des données, associant ainsi étroitement les tâches discriminantes à l’IA. Deuxièmement, l’application de modèles analytiques linéaires sur les fonctionnalités extraites est plus efficace en termes de calcul. Ces deux avantages sont importants pour le Big Data, car ils permettent d’accomplir des tâches complexes comme la reconnaissance faciale dans les images, la compréhension de millions d’images, etc.

Balisage d’images et de vidéos sémantiques

Les mécanismes d’apprentissage profond peuvent faciliter la segmentation et l’annotation des scènes d’images complexes. Le deep learning peut également être utilisé pour la reconnaissance de scènes d’action ainsi que pour le balisage de données vidéo. Il utilise une analyse de la variable indépendante pour apprendre les caractéristiques spatio-temporelles invariantes à partir de données vidéo. Cette approche aide à extraire des fonctionnalités utiles pour effectuer des tâches discriminantes sur des données d’image et vidéo.

Le deep learning a réussi à produire des résultats remarquables dans l’extraction de fonctionnalités utiles. Cependant, il reste encore un travail considérable à faire pour une exploration plus approfondie qui comprend la détermination d’objectifs appropriés dans l’apprentissage de bonnes représentations de données et l’exécution d’autres tâches complexes dans l’analyse du Big Data.

data-science
Dossier

Qu’est-ce que la data science et quelle est son importance ?

La data science ou science des données est une science appliquée. Elle fait appel à des méthodes et des connaissances issues de nombreux domaines tels que les mathématiques, les statistiques et l’informatique, notamment la programmation informatique. Depuis le début de ce millénaire, la data science est une discipline indépendante.

Il existe des cours spécifiques pour la science des données. Les personnes travaillant dans ce domaine sont connues sous le nom de data scientists ou scientifiques des données. Tout mathématicien, informaticien, programmeur, physicien, économiste d’entreprise ou statisticien qui a acquis ses connaissances en se spécialisant dans les tâches de science des données peut devenir un data scientist.

Le but de la data science est de générer des connaissances à partir de données. Dans l’environnement Big Data, la science des données est utilisée pour analyser des ensembles de données en grandes quantités avec l’apprentissage automatique (machine learning) et l’intelligence artificielle (IA). La science des données est utilisée dans diverses industries et domaines spécialisés.

Les objectifs de la data science

Pour faire simple, les objectifs de la data science sont de :

  • Établir un moteur de recommandation à partir des données clients (sur le site, sur les réseaux sociaux…)

Aujourd’hui, les moteurs de recommandation de produits sont capables de rencontrer un client en temps réel. Par exemple, les magasins qui utilisent les recommandations de produits ont la possibilité de personnaliser chacune de leurs pages. Sur chacune d’elles, ils  proposent des offres qui attirent le client de la page d’accueil à la page de paiement.

  • Fournir une aide à la décision

La prise de décision basée sur les données est définie comme l’utilisation de faits, de mesures et de données. Il est ainsi possible de guider les parties prenantes dans une entreprise à prendre des décisions stratégiques. Lorsqu’une organisation tire pleinement parti de la valeur de ses données, tous ceux qui y travaillent ont la capacité de prendre de meilleures décisions.

  • Optimiser et automatiser les processus internes

Les entreprises cherchent constamment à simplifier les tâches. Elles veulent également réduire les coûts. Cela est possible grâce à la data science. Il peut être aussi optimisé afin de gagner en efficacité et en compétitivité.

  • Soutenir les parties prenantes dans la gestion de l’entreprise

Outre l’aide à la prise de décision, la data science permet de recouper des données pertinentes pour apporter des éléments concrets. Sur ces derniers, les différents responsables d’une entreprise pourront baser leurs actions.

  • De développer des modèles prédictifs

Par le biais de l’analyse prédictive, la data science permet de prédire les événements futurs. En règle générale, les données sont utilisées pour créer un modèle mathématique afin de détecter les tendances les plus importantes. Ce modèle prédictif est ensuite appliqué aux données actuelles pour prédire les événements futurs ou suggérer des mesures à prendre pour obtenir des résultats optimaux.

Les disciplines de la science des données

La data science est une science interdisciplinaire qui utilise et applique des connaissances et des méthodes provenant de divers domaines. Les mathématiques et les statistiques constituent l’essentiel de ces connaissances. Ce sont les bases permettant au data scientist d’évaluer les données, de les interpréter, de décrire les faits ou de faire des prévisions. Dans le cadre de l’analyse prédictive, les statistiques inductives sont souvent utilisées en plus d’autres méthodes statistiques pour anticiper les événements futurs.

Un autre groupe de connaissances appliquées dans la science des données est la technologie de l’information et l’informatique. La technologie de l’information fournit des processus et des systèmes techniques de collecte, d’agrégation, de stockage et d’analyse des données. Les éléments importants dans ce domaine sont les bases de données relationnelles, les langages de requête de bases de données structurées tels que SQL (Structured Query Language), le langage de programmation et de script sur des outils tels que Python et bien plus encore.

En plus des connaissances scientifiques spécifiques, la data science accède à ce que l’on appelle la connaissance de l’entreprise (connaissance du domaine ou savoir-faire de l’entreprise). Elle est nécessaire pour comprendre les processus dans une organisation particulière ou une entreprise d’un secteur spécifique. La connaissance du domaine peut concerner des compétences commerciales : marketing de produits et services, savoir-faire logistique, expertise médicale.

data-science-et-big-data

La relation entre le Big Data et la data science

En raison de l’augmentation continuelle des volumes de données à traiter ou à analyser, le terme Big Data s’est imposé. Le Big Data est au cœur du traitement des données. Il concerne les méthodes, procédures, solutions techniques et systèmes informatiques. Ceux-ci sont capables de faire face au flux de données et au traitement de grandes quantités de données sous la forme souhaitée.

Le Big Data est un domaine important de la data science. La science des données fournit des connaissances et des méthodes pour collecter et stocker de nombreuses données structurées ou non structurées (par exemple dans un data lake ou lac de données), les traiter à l’aide de processus automatisés et les analyser. La science des données utilise, entre autres, l’exploration de données ou data mining, l’apprentissage statistique, l’apprentissage automatique (machine learning), l’apprentissage en profondeur (deep learning) et l’intelligence artificielle (IA).

Le rôle du data scientist dans la data science

Les personnes impliquées dans la science des données sont les scientifiques des données ou data scientists. Ils acquièrent leurs compétences soit en suivant une formation en data science, soit en se spécialisant dans le métier de data scientist.

Les scientifiques des données sont souvent des informaticiens, des mathématiciens ou des statisticiens. Ils sont également des programmeurs, des experts en bases de données ou des physiciens qui ont reçu une formation complémentaire en science des données.

En plus des connaissances spécifiques, un data scientist doit être en mesure de présenter clairement les modèles. Il les génère à partir des données et de les rapprocher de divers groupes cibles. Il doit également avoir des compétences appropriées en communication et en présentation. En effet, un data scientist a un rôle de conseiller ou de consultant auprès de la direction d’une entreprise. Les termes data scientist et data analyst sont souvent confondus dans l’environnement d’une entreprise. Parfois, leurs tâches et domaines d’activité se chevauchent.

L’analyste de données effectue une visualisation de données classique et pratique. De son côté, le data scientist poursuit une approche plus scientifique. Pour ce faire, il utilise des méthodes sophistiquées comme l’utilisation de l’intelligence artificielle ou de l’apprentissage automatique et des techniques avancées d’analyse et de prédiction.

Domaines d’application de la data science

Il n’y a pratiquement pas de limites aux applications possibles de la science des données. L’utilisation de la data science est logique partout où de grandes quantités de données sont générées et que des décisions doivent être prises sur la base de ces données.  La science des données est d’une grande importance dans certains entreprises et activités : santé, logistique, vente au détail en ligne et en magasin, assurance, finance, industrie et manufacturing.

data-analyst
Dossier

Qu’est-ce qu’un data analyst ?

Le domaine du Big Data, le Cloud Computing et l’intelligence artificielle ne cessent de croître. Grâce à cela, de nouveaux métiers apparaissent chaque jour comme l’analyste de données ou data analyst  qui est devenu l’un des profils les plus demandés du secteur.

Qu’est-ce qu’un data analyst ?

Le data analyst est un profil professionnel qui, grâce à l’interprétation des données, peut établir des stratégies au sein d’une entreprise comme une stratégie marketing par exemple. Par conséquent, il doit savoir collecter des données et les analyser.

Un data analyst travaille avec de grandes quantités de données brutes, mais les données en elles-mêmes ne disent rien. L’entreprise a besoin d’un expert qui trouve des modèles à travers ces données pour pouvoir effectuer certaines actions, car leur interprétation est un outil de prise de décision.

Quelles sont les tâches quotidiennes d’un data analyst ?

Aujourd’hui, la plupart des entreprises sont constamment derrière l’utilisateur. Par conséquent, il est essentiel d’avoir un département d’analyse de données dirigé par un chief data officer travaillant aux côtés de data analysts qui interprètent les données statistiques recueillies afin d’établir des modèles de comportement des clients.

L’analyste de données est en charge de :

          L’extraction, le traitement et le regroupement des données

          L’analyse de ces groupes de données

          L’établissement de rapports d’analyse

Il ne fait aucun doute qu’un analyste de données doit développer ses compétences mathématiques et statistiques. De cette manière, il parvient à effectuer une analyse complète des données extraites. Pour ce faire, il utilise plusieurs outils d’analyse ainsi que des langages de programmation utilisés dans la data science comme Python.

data-analyst

En plus de ces compétences en outils et statistiques, des qualités telles que le travail d’équipe doivent aussi être prises en compte. Et pour cause, un data analyst doit travailler main dans la main avec le département chargé des projets de Business Intelligence.

L’analyste de données est une figure nécessaire dans n’importe quel secteur. En ce sens, il doit être prêt à présenter des données à n’importe quel niveau de l’entreprise. Savoir communiquer efficacement devrait être l’un de ses points forts, car il ne traitera pas seulement avec le data scientist ou le data engineer, mais avec toutes les parties prenantes pour la bonne marche des activités.

L’analyste de données doit également être intrigué et curieux sur ce qui se cache derrière toutes les informations générées par une entreprise. Ce sont des capacités qui sont propres à une personne innovante telle qu’un data analyst.

Pourquoi les entreprises recherchent-elles des data analysts ?

Un data analyst apporte de la valeur à son travail. Et pour cause, un bon analyste de données a cinq caractéristiques que chaque entreprise recherche.

1.      Curiosité pour analyser et interpréter les données

La première grande raison pour laquelle un data analyst est important dans une entreprise est qu’il prend les données, les analyse et en tire le meilleur parti. Il s’agit d’un élément important de son profil dans la mesure où il s’occupe de la grande quantité de données stockées et gérées par les entreprises.

2.      Capacité à résoudre des problèmes

L’un des traits les plus courants d’un bon analyste de données est qu’il est une personne orientée vers la résolution de problèmes. Le data analyst se démarque de cette capacité à résoudre les problèmes qui apparaissent, l’un des points qui caractérisent un bon travailleur.

3.      Capacité à résoudre les problèmes techniques

En plus de savoir analyser, interpréter et contourner les problèmes simples, un bon data analyst se distingue aussi par sa capacité à résoudre des problèmes techniques. Il doit avoir des connaissances en programmation et sait utiliser le langage informatique comme SQL.

4.      Capacité à s’adapter à n’importe quel secteur

En plus de savoir travailler sur des données, de prendre des décisions et d’utiliser le langage informatique, une autre caractéristique qui fait que les postes de data analyst sont nombreux est que l’analyste de données sait s’adapter à n’importe quel secteur d’activité. La capacité d’adaptation rapide à une entreprise, quel que soit son domaine, est une autre raison pour laquelle le métier d’analyste de données est valorisé.

Quel est le salaire d’un data analyst ?

La profession d’analyste de données est en plein essor et a un avenir pour les prochaines années. Le salaire annuel d’un data analyst junior peut commencer à partir de 35 000 euros. Au bout de quelques années, il peut atteindre 50 000 euros en fonction de l’expérience antérieure.

Il faut garder à l’esprit que ce métier sera de plus en plus sollicité grâce à la transformation digitale que vivent actuellement de nombreuses entreprises. Dans certaines organisations, un data analyst peut même facturer son travail jusqu’à 60 000 euros par an. Mais, encore une fois, tout dépend de l’expérience, un élément important que de nombreuses entreprises exigent. De plus, le salaire d’un analyste de données ne peut pas être dit en des termes généraux, car il peut également dépendre de divers facteurs liés à l’entreprise.

Dossier

Pourquoi Python est-il populaire auprès des data scientists ?

Le langage de programmation de Python Software Foundation est une programmation orientée objet. Lorsque les data scientists parient sur Python pour le traitement des données volumineuses, ils sont conscients qu’il existe d’autres options populaires telles que R, Java ou SAS. Toutefois, Python demeure la meilleure alternative pour ses avantages dans l’analyse du Big Data.

Pourquoi choisir Python ?

Entre R, Java ou Python pour le Big Data, choisir le dernier (en version majeure ou version mineure) est plus facile après avoir lu les 5 arguments suivants :

1.      Simplicité

Python est un langage de programmation interprété connu pour faire fonctionner les programmes avec le moins de chaînes de caractères et de lignes de code. Il identifie et associe automatiquement les types de données. En outre, il est généralement facile à utiliser, ce qui prend moins de temps lors du codage. Il n’y a pas non plus de limitation pour le traitement des données.

2.      Compatibilité

Hadoop est la plateforme Big Data open source la plus populaire. La prise en charge inhérente à Python, peu importe la version du langage, est une autre raison de la préférer.

3.      Facilité d’apprentissage

Comparé à d’autres langages, le langage de programmation de Guido Van Rossum est facile à apprendre même pour les programmeurs moins expérimentés. C’est le langage de programmation idéal pour trois raisons. Premièrement, elle dispose de vastes ressources d’apprentissage. Deuxièmement, elle garantit un code lisible. Et troisièmement, elle s’entoure d’une grande communauté. Tout cela se traduit par une courbe d’apprentissage progressive avec l’application directe de concepts dans des programmes du monde réel. La grande communauté Python assure que si un utilisateur rencontre des problèmes de développement, il y en aura d’autres qui pourront lui prêter main-forte pour les résoudre.

4.      Visualisation de données

Bien que R soit meilleur pour la visualisation des données, avec les packages récents, Python pour le Big Data a amélioré son offre sur ce domaine. Il existe désormais des API qui peuvent fournir de bons résultats.

5.      Bibliothèques riches

Python dispose d’un ensemble de bibliothèques riche. Grâce à cela, il est possible de faire des mises à jour pour un large éventail de besoins en matière de science des données et d’analyse. Certains de ces modules populaires apportent à ce langage une longueur d’avance : NumPy, Pandas, Scikit-learn, PyBrain, Cython, PyMySQL et iPython.

Que sont les bibliothèques en Python ?

La polyvalence de toutes les versions de Python pour développer plusieurs applications est ce qui a poussé son usage au-delà de celui des développeurs. En effet, il a attiré l’intérêt de groupes de recherche de différentes universités du monde entier. Il leur ont permis de développer des librairies pour toutes sortes de domaines : application web, biologie, physique, mathématiques et ingénierie. Ces bibliothèques sont constituées de modules qui ont un grand nombre de fonctions, d’outils et d’algorithmes. Ils permettent d’économiser beaucoup de temps de programmation et ont une structure facile à comprendre.

Le programme Python est considéré comme le langage de programmation pour le développement de logiciels, de pages Web, d’applications de bureau ou mobiles. Mais, il est également le meilleur pour le développement d’outils scientifiques. Par conséquent, les data scientists sont destinés à aller de pair avec Python pour développer tous leurs projets sur le Big Data.

Python et la data science

La data science est chargée d’analyser, de transformer les données et d’extraire des informations utiles pour la prise de décision. Et il n’y a pas besoin d’avoir des connaissances avancées en programmation pour utiliser Python afin d’effectuer ces tâches. La programmation et la visualisation des résultats sont plus simples. Il y a peu de lignes de code en Python et ses interfaces graphiques de programmation sont conviviales.

Dans le développement d’un projet de science des données, il existe différentes tâches pour terminer ledit projet, dont les plus pertinentes sont l’extraction de données, le traitement de l’information, le développement d’algorithmes (machine learning) et l’évaluation des résultats.

Dossier

Métiers de la Data : Tour d’horizon des métiers phares

Vous souhaitez devenir un professionnel de la Data mais vous ne savez pas quel métier répondra au mieux à vos attentes dans le domaine ? Dans cet article, nous allons essayer de répondre à toutes vos questions en vous présentant en détail chacun des métiers de la Data.

Le Data Scientist

Le Data Scientist est un scientifique. Il a pour but de trouver des solutions grâce à l’analyse de données. Ainsi, le Data Scientist doit trouver ou créer l’algorithme le plus intéressant pour répondre aux différents besoins de son entreprise.

Le métier de Data Scientist peut souvent faire penser qu’une connaissance très développée en mathématiques statistiques est obligatoire. Néanmoins, ce métier demande surtout d’être capable de comprendre des données et de savoir différencier un algorithme efficace et utilisable, d’un algorithme qui ne fonctionne pas correctement. Ainsi, le Data Scientist devra comparer les modèles d’analyse de données et partager ensuite son impression avec le reste de l’équipe.

Concernant les salaires, en France et selon une enquête de DataScientest sur les salaires des metiers de la data menée auprès des entreprises du CAC 40, Data Scientist peut gagner entre 35 000 et 55 000 euros par an en début de carrière. En devant senior, il peut un salaire compris entre 45 000 et 60 000 euros par an.

Le Data Engineer

Le Data Engineer est comme son nom l’indique un ingénieur : il fabrique.
Ainsi, le Data Engineer se doit de réunir des données brutes et venant de nombreuses sources différentes dans une Data Warehouse centralisée : il doit donc créer et organiser les bases de données en mettant en place un pipeline pour rendre l’obtention de données et leur stockage automatique. Ensuite, le Data Engineer trie les données et les rend analysable pour les Data Scientists.

Concernant les salaires, toujours selon la même enquête de DataScientest, un Data Engineer gagne annuellement entre 35 000 et 60 000 euros et son salaire peut nettement augmenter avec les années d’expériences.

Le Data Analyst

Le Data Analyst a pour mission principale d’analyser les données. Le Data Analyst possède de grandes compétences en « Data Visualization ». Il étudie notamment des bases de données nettoyée pour y trouver des connaissances qui aideront l’entreprise à prendre des décisions.  Néanmoins, à la différence du Data Scientist, le Data Analyst ne formule pas lui-même les problèmes auxquels il va trouver des solutions : il se suffit à résoudre des problèmes soulignés par son entreprise notamment grâce à SQL

Concernant le salaire, le Data Scientist a plus de compétences que le Data Analyst. Il n’est donc pas étonnant que son salaire soit supérieur. En France, toujours selon l’enquête de DataScientest, il varie annuellement entre 35 000 et 60 000 euros selon son expérience.

Le Data Manager

Le Data Manager recueille et classe les informations de l’entreprise. Ses missions principales sont de recueillir toutes les données, les organiser, les rendre compréhensible, ajouter les données manquantes, supprimer les erreurs, et enfin, sécuriser les données.

Le Data Manager peut exercer en tant que salarié de l’entreprise où il exerce ou consultant d’une entreprise extérieure à son entreprise. Concernant les salaires, un Data Manager touche mensuellement entre 2 200 et 2 600 euros bruts par mois et augmente par la suite en fonction de ses responsabilités et du domaine d’activité de son entreprise.

Le Business Analyst

Le Business Analyst a un rôle très opérationnel et étudie les stratégies de l’entreprise au niveau marketing et financier. Contrairement au Data Analyst, il effectue l’analyse de l’activité de manière interne à l’entreprise.

Le Business Intelligence Manager

Le Business intelligence manager doit fouiller dans les données de l’entreprise, les trier et les analyser pour produire des guides d’aide à la prise de décision dans lequel il expose un constat, y expose ses recommandations de solutions de marketing et de data science.

Le Chief Data Officer

Le Chief Data Officer dirige la collecte des données et leur optimisation. Il décide la manière avec laquelle l’entreprise va utiliser les données qu’elle possède. Le Chief Data Officer peut être comparé à un véritable manager qui aurait certaines connaissances en Data.  

Le Data Protection Officer

Le Data Protection Officer est en charge de la protection des données : il fait le lien entre la loi et la technologie. Ainsi, il donne la possibilité à son entreprise d’exploiter les données qui sont à sa disposition sans enfreindre la vie privée des utilisateurs.

Le Data Architect

Le Data Architect est, comme son nom l’indique, un architecte. Il gère la façon dont les données vont être enregistrées. Il maîtrise donc les outils du Big Data et les solutions Cloud comme l’iCloud d’Apple.

Le Data Miner

Le Data Miner extrait, trie et rend lisible les données brutes. Il intervient souvent dans les structures qui ont des sources de données extrêmement variées et qui demandent un grand nettoyage.

Le Master Data Manager

Ce métier est réservé aux personnes très qualifiées. Le Master Data Management est un terme qui désigne la gestion des données critiques. Toutes ces données sont au sein d’un seul fichier, le Master File, et permet de faciliter le partage de données entre les départements de l’entreprise.

L’Ingénieur Big Data

L’ingénieur Big Data a des tâches très variées mais se charge notamment de la valorisation des données. Il analyse en effet des grands volumes de données à l’aide de différents logiciels pour les rendre exploitable pour ensuite les classer et les mettre en avant dans des rapports détaillés. L’ingénieur Big Data est aussi en charge de la création et de la mise en place des clusters. Il doit aussi se charger de la mise en place des algorithmes et de son contrôle qualité, pour ensuite assurer la cohérence du résultat.

Dossier

Pollution Numérique et Data Science

La crise du Covid et la pause imposée à certaines industries comme le transport aérien a soulevé une nouvelle fois l’impact néfaste de l’Homme sur son environnement et le rôle qu’il peut jouer pour préserver la planète. Face aux gros pollueurs dont l’activité est de plus en plus critiquée, il existe une pollution encore méconnue: la pollution numérique  . Connue par 17% des Français selon une étude d’Inum, elle désigne la pollution liée à l’impact du numérique dans son ensemble, c’est-à-dire de sa création et sa fin de vie. 

Que représente la pollution numérique par rapport à toutes les autres formes de pollution ? Quels sont les mécanismes en jeu ? Comment limiter l’impact du numérique sur la planète ?

Pollution numérique : Des chiffres surprenants

La  pollution numérique est responsable de l’émission de 1400 millions de tonnes de CO2 par an, soit 4% des émissions mondiales de gaz à effet de serre. Elle est issue principalement des data center à hauteur de 25%, des infrastructures de réseau à 28% et à 47% en ce qui concerne les équipementsIl est généralement plus symbolique de comparer ces chiffres à quelque chose plutôt que de les citer.  La forte augmentation d’utilisateurs et notre consommation de données laissent prévoir que d’ici 2025, cette empreinte aura doublée

 

Les gestes du quotidien, pris individuellement, n’ont pas grand impact. Le problème est que ces petits gestes font partie d’une masse beaucoup plus vaste.  Pour visualiser l’impact du numérique, il faut se rendre compte qu’internet c’est 45 millions de serveurs, 800 millions d’équipements réseaux, 15 milliards d’objets connectés en 2018, 10 milliards de mails envoyés (hors spam) et 180 millions de requêtes en 1 heure

Voici ce que des gestes anodins du quotidien peuvent représenter comme pollution  :

  • 1 mail est l’équivalent d’une ampoule basse consommation pendant 1h, alors on multiplie cela par 10 milliards. 
  • 1 internaute c’est 1000 requêtes par an, soit 287 000 de CO2, soit 1,5 millions de km parcourus en voiture
  • Encore plus gourmand, le streaming vidéo ! Il représente 60% des flux de données sur internet et on comprend pourquoi quand on sait que rien que Pulp Fiction pèse 200 000 fois plus lourd qu’un email sans pièce jointe. 

Ces chiffres peuvent sembler exagérés, mais il s’agit bien de la réalité. Cependant, il faut noter que la plus grande part de pollution provient de la fabrication des matériels numériques et non de leur utilisation. Un téléviseur nécessite 2,5 tonnes de matières premières pour sa création, ce qui est équivalent à un aller-retour Paris Nice en avion en termes de CO2. Un ordinateur de 2kg nécessite 800 kg de matière premières. Et plus c’est petit, plus c’est polluant. Alors on vous laisse imaginer pour un smartphone.

 La Data Science pour aider à réduire la pollution numérique

La data science a bien sûr son rôle à jouer dans tout ça. Plusieurs start-up ou entreprises font appel à cette technologie. La start-up Cleanfox a développé un outil qui vous débarrasse des spams et newsletter : «Nous avons développé des technologies nous permettant de lire les en-têtes des mails sans récupérer de données personnelles, explique Édouard Nattée, le fondateur de Cleanfox. Nous nous sommes aperçus que ces mêmes technologies pouvaient nous servir à détecter des newsletters et proposer à l’internaute de se désabonner automatiquement.». Cleanfox analyse votre boite mail et vous propose de supprimer ou non ce mail, en donnant des informations relatives tel que la quantité de CO2 entraîner par ce mail par exemple.

Comment la data science peut-elle lutter contre le réchauffement climatique ?

Au cœur des enjeux planétaires actuelles, le réchauffement climatique constitue un des plus grands défis de notre époque. Malgré de nombreuses politiques menées par les pays du monde entier visant à réduire les émissions de CO2, le volume d’émission de dioxyde de carbone continue de croître de manière exponentielle si bien que les chances de survies de l’Homme au sein de la planète Terre s’amenuisent de jours en jours. Toutefois, même si l’horloge tourne, l’Homme accompagné des nouvelles technologies qu’il a mis au point a encore la possibilité de sauver notre chère planète bleue. C’est dans ce contexte que l’Intelligence Artificielle et le Machine Learning pourraient devenir les défenseurs n°1 de la lutte contre le réchauffement climatique. 

 

Voici le top 5 des différentes façons au travers desquelles le Machine Learning pourrait permettre de sauver la planète :

Le Machine Learning pour gérer la consommation d’énergie

De nos jours, la consommation d’énergie et des combustibles fossiles tels que le pétrole ne cessent de polluer contribuant ainsi grandement au réchauffement de la planète. Pour lutter contre cette consommation dévastatrice, les gouvernements des pays du monde entier tendent à privilégier désormais les énergies renouvelables telles que le vent ou le soleil qui, en plus d’être moins néfastes pour l’environnement, coûtent moins chers.

Néanmoins, ces sources d’énergie étant fortement dépendantes de la météo, il semble difficile pour l’Homme de déterminer la quantité exacte d’énergie qui sera produite.
Les algorithmes de Machine Learning, en analysant les données météorologiques et les conditions atmosphériques pourraient non seulement prédire le volume d’énergie généré mais également prédire la demande permettant ainsi de redistribuer la production vers les différentes centrales, tout en évitant le gaspillage.

Autre point intéressant, les nouvelles technologies permettent, sur la base de l’intelligence artificielle, de gérer la consommation d’énergie. Les assistants intelligents peuvent étudier les habitudes d’une maison et décider d’éteindre le chauffage pendant que personne n’y est et de réchauffer la maison une heure avant le retour des résidents.
La prévision de l’énergie nécessaire pour alimenter une machine, une usine, voire une ville permet de ne pas sur-produire, ainsi de ne pas gaspiller et ne pas émettre de l’énergie inutilement.

Le Machine Learning pour gérer le secteur du transport

Un autre secteur où le Machine Learning pourrait avoir impact positif retentissant est le transport. En effet, il pourrait par exemple optimiser les trajets permettant ainsi un allégement du trafic routier, un des acteurs actuels les plus polluants.

Le Machine Learning pour aider les satellites de surveillance de CO2

En vue de contrôler la quantité de CO2 émises par chaque pays européen, l’UE envisage dans les années à venir de mettre en place des satellites de surveillance de CO2Le Machine Learning, combiné aux données récoltées par ces satellites pourrait permettre d’identifier non seulement les émetteurs principaux de CO2 mais également les secteurs d’activité les plus polluants.  Il sera plus facile pour un pays par exemple de déterminer les  domaines sur lesquels il faudra réfléchir en priorité pour moins polluer.

Le Machine Learning pour aider les pays les plus vulnérables au réchauffement climatique

Le Machine Learning, en étudiant les données et photographies prises par les satellites, pourrait identifier les différentes régions du monde sujettes au réchauffement climatique. Cela pourrait par la même occasion permettre aux différents pays concernés d’anticiper et ainsi de mieux gérer les éventuelles catastrophes naturelles qui risquent de les frapper. 

De même, une analyse en temps réel des publications via les réseaux sociaux comme Twitter ou Facebook permettraient de déterminer dans quelles régions du monde, une aide est la plus nécessaire.

Le Machine Learning pour éviter le gaspillage alimentaire

L’analyse de données massives via le Machine Learning pourrait permettre d’optimiser des processus industriels et donc de réduire les émissions polluantes. Par exemple, les fermiers pourrait recevoir en temps réel des informations sur leurs plantations pour diffuser la quantité d’eau nécessaire. Autre exemple, des entreprises spécialisés pourraient organiser la redistribution de nourriture pour éviter le gaspillage en alimentant les zones connaissant des carences.

Devenir Data Scientist pour sauver la planète

Dans cet article, vous avez pu découvrir les opportunités que les data sciences offrent pour lutter contre le réchauffement climatique au travers une meilleure gestion de l’énergie et des ressources disponibles. Pour maîtriser ces nouvelles technologies, une formation s’impose. Pourquoi ne pas choisir un organisme qui a déjà fait ses preuves pour former des data scientists de plus de 30 grands groupes français et qui ouvre désormais ses classes aux particuliers ?

 

Comme nous l’avons observé tout au long de cet article, la pollution numérique a un impact négatif conséquent sur l’environnement et ne cesse d’augmenter exponentiellement.  La data science, de par son étude de la big data, nécessite une grande quantité de données, très polluante à conserver. Néanmoins, l’intelligence artificielle et le Machine Learning, à travers leurs capacités à s’appliquer à des domaines tels que l’énergie, le transport, le gaspillage alimentaire offrent de vastes perspectives d’avenir synonymes de lueurs d’espoirs pour la préservation de notre planète. Il convient alors aux différents gouvernements et aux entreprises de trouver un juste milieu entre l’impact négatif et l’influence positive que pourraient apporter la data science à l’environnement.