Browsing Tag

Data Analyst

BeautifulSoup
Définitions

Beautiful Soup : tout savoir sur la bibliothèque Python de Data Scraping

Le web est une véritable mine de données informatiques. Ces données peuvent être exploitées, analysées pour une infinité de cas d’usage et d’applications. On peut les utiliser pour nourrir des systèmes de Machine Learning, d’intelligence artificielle, ou tout simplement pour mettre en lumière des tendances et des phénomènes.

S’il est possible de collecter ces données manuellement afin de constituer de vastes datasets, cette tâche représente un travail de titan. Afin de l’automatiser, on utilise le Web Scraping.

Qu’est-ce que le Web Scraping ?

Le Web Scraping est un processus qui consiste à assembler des informations en provenance d’internet, à l’aide de divers outils et frameworks. Cette définition est très large, et même le fait de copier / coller les paroles d’une chanson peut être considéré comme une forme de Web Scraping.

Toutefois, le terme de Web Scraping désigne généralement un processus impliquant l’automatisation. Les volumes massifs de données sont collectés automatiquement, afin de constituer de vastes datasets.

Certains sites web s’opposent à la collecte de leurs données par des scrapers automatiques. En règle générale, le scraping à des fins éducatives est plus toléré que pour un usage commercial. Il est important de consulter les conditions d’utilisation d’un site avant d’initier un projet.

À quoi sert le Web Scraping ?

Le Web Scraping permet d’agréger des informations plus rapidement qu’avec une collecte manuelle. Il n’est plus nécessaire de passer de longues heures à cliquer, à dérouler l’écran ou à rechercher les données.

Cette méthode se révèle particulièrement utile pour amasser de très larges volumes de données en provenance de sites web régulièrement mis à jour avec du nouveau contenu. Le scraping manuel est une tâche chronophage et rébarbative.

À l’échelle individuelle, le Web Scraping peut se révéler utile pour automatiser certaines tâches. Par exemple, un demandeur d’emploi peut utiliser Python pour automatiser ses recherches d’offres. Quelques lignes de code permettent d’enregistrer automatiquement les nouvelles annonces publiées sur des plateformes comme Indeed ou Monster, afin de ne plus avoir à visiter ces sites web quotidiennement.

web-scraping-beautiful-soup

Le Web Scraping peut aussi être utilisé pour surveiller des changements de prix, comparer des prix, ou surveiller la concurrence en collectant des sites web en provenance de leurs sites web. Les possibilités sont nombreuses et diverses.

Toutefois, cette méthode se révèle surtout pertinente pour les projets Big Data nécessitant d’immenses volumes de données. Par exemple, l’entreprise ClearView AI a utilisé le Web Scraping sur les réseaux sociaux afin de constituer une immense base de données de photos de profils pour son logiciel de reconnaissance faciale.

Le Web Scraping est presque aussi vieux qu’internet. Alors que le World Wide Web fut lancé en 1989, le World Wide Web Wanderer a été créé quatre ans plus tard. Il s’agit du premier robot web créé par Matthew Gray du MIT. Son objectif était de mesurer la taille du WWW.

Les défis du Web Scraping

Depuis sa création, internet a beaucoup évolué. On y trouve une large variété de types et formats de données, et le web scraping comporte donc plusieurs difficultés.

Le premier défi à relever est celui de la variété. Chaque site web est différent et unique, et nécessite donc un traitement spécifique pour l’extraction d’informations pertinentes.

En outre, les sites web évoluent constamment. Un script de Web Scraping peut donc fonctionner parfaitement la première fois, mais se heurter ensuite à des dysfonctionnements en cas de mise à jour.

Dès que la structure d’un site change, le scraper peut ne plus être capable de naviguer la ” sitemap ” correctement ou de trouver des informations pertinentes. Heureusement, la plupart des changements apportés aux sites web sont minimes et incrémentaux, et un scraper peut donc être mis à jour avec de simples ajustements.

Néanmoins, face à la nature dynamique d’internet, les scrapers nécessitent généralement une maintenance constante. Il est possible d’utiliser l’intégration continue pour lancer périodiquement des tests de scraping et s’assurer que les scripts fonctionnent correctement.

Les APIs en guise d’alternative au Web Scraping

Certains sites web proposent des APIs (interface de programmation d’application) permettant d’accéder à leurs données de manière prédéfinie. Ces interfaces permettent d’accéder aux données directement en utilisant des formats comme JSON et XML, plutôt que de s’en remettre au parsing de HTML.

L’utilisation d’une API est en général un processus plus stable que l’agrégation de données via le Web Scraping. Pour cause, les développeurs créent des APIs conçues pour être consommées par des programmes plutôt que par des yeux humains.

API-beautiful-soup

La présentation front-end d’une site web peut souvent changer, mais un tel changement dans le design d’un site web n’affecte pas la structure de son API. Cette structure est généralement plutôt permanente, ce qui en fait une source plus fiable de données.

Néanmoins, les APIs aussi peuvent changer. Les défis liés à la variété et à la durabilité s’appliquent donc aussi bien aux APIs qu’aux sites web. Il est également plus difficile d’inspecter la structure d’une API par soi-même si la documentation fournie n’est pas suffisamment complète.

Qu’est-ce que Beautiful Soup ?

Beautiful Soup est une bibliothèque Python utilisée pour le Web Scraping. Elle permet d’extraire des données en provenance de fichiers XML ou HTML. Cette bibliothèque crée un arbre de parsing à partir du code source de la page, pouvant être utilisé pour extraire les données de manière hiérarchique et lisible.

À l’origine, Beautiful Soup fut introduite en mai 2006 par Leonard Richardson qui continue à contribuer au projet. En outre, le projet est soutenu par Tidelift et son outil de maintenance open-source proposé par abonnement payant.

En plus de ses hautes performances, Beautiful Soup apporte plusieurs avantages. Cet outil permet de parcourir les pages de la même manière qu’un navigateur, et enjolive le code source.

Comment apprendre à utiliser Beautiful Soup et Python ?

Afin d’apprendre à utiliser Beautiful Soup, vous pouvez choisir DataScientest. Leur formation Data Analyst commence avec un module dédié à la programmation en Python, et comporte un module dédié à l’extraction de données textes et au Web Scraping.

Les autres modules de ce cursus couvrent la Dataviz, le Machine Learning, les bases de données Big Data et la Business Intelligence. À l’issue du programme, vous aurez toutes les compétences requises pour exercer le métier de Data Analyst.

Toutes nos formations adoptent une approche Blended Learning combinant coaching individuel sur notre plateforme en ligne et Masterclass. Le programme peut être complété en Formation Continue ou en mode BootCamp intensif.

À la fin du cursus, vous recevrez un certificat délivré par l’Université Paris la Sorbonne dans le cadre de notre partenariat. Parmi les alumnis, 80% ont trouvé un emploi immédiatement après la formation.

Nos programmes sont éligibles au Compte Personnel de Formation pour le financement. N’attendez plus et découvrez la formation Data Analyst de DataScientest !

Vous savez tout sur Beautiful Soup. Découvrez notre dossier complet sur le langage Python, et notre dossier sur le métier de Data Analyst.

pandas-bibliothèque-python
Définitions

Pandas : une bibliothèque Python pour manipuler facilement des données

La bibliothèque Pandas est certainement la plus utile pour les data scientist sous le langage Python. Elle permet d’explorer, transformer, visualiser et comprendre vos données afin d’en retirer le maximum d’informations. Voyons ensemble dans quelles cas l’utiliser et ses fonctions les plus courantes.

Si vous évoluez dans la data science, vous avez sûrement entendu parler de la bibliothèque Pandas. Son nom n’a rien à voir avec ce petit animal d’Asie qui ressemble à un ours. Le nom «Pandas» est une contraction des mots «Panel Data» et «Python Data Analysis». Pandas est donc une bibliothèque open-source proposant différentes fonctions qui permettent la manipulation et l’analyse de données en Python de manière simple et intuitive. C’est donc une bibliothèque polyvalente qui vous permettra de réaliser facilement des analyses de données complexes. La bibliothèque Pandas permet également de créer facilement des graphes, très utiles dans la Data Analyse.

Première force de Pandas, elle se base sur la bibliothèque Numpy

Grand avantage de Pandas, elle se base sur la très populaire bibliothèque Numpy. Cette bibliothèque fournit une pléiade de structures de données et d’opérations qui permettent de traiter des données numériques et des données chronologiques. La bibliothèque Pandas est également importante car ses données sont souvent utilisées comme base pour les fonctions de plotting de Matplotlib, une autre bibliothèque renommée utilisant le langage Python. Les données issues de Pandas sont aussi très utiles dans l’analyse statistique en SciPy, les algorithmes de Machine Learning en Scikit-learn. La bibliothèque Pandas est également très utilisée dans le traitement et l’analyse des données tabulaires (vous pourrez stocker vos données sous le format .csv, .tsv et .xlsx) en entrant des requêtes de type SQL.

Les Séries, les Dataframes et le Panel : les principales structures de données de Python Panda

Si vous utilisez Pandas, vous travaillerez principalement avec deux structures de données, les Séries et les Dataframes.

Les Séries : Une Série est un tableau unidimensionnel étiqueté qui peut contenir des données de n’importe quel type (entier, chaîne, flottant, objets python, etc.). En d’autres mots, les séries sont équivalentes aux colonnes dans un tableau Excel. Les étiquettes des axes sont collectivement appelées index.

Pandas en général est utilisé pour les données de séries chronologiques financières ou des données économiques. Ce langage dispose de nombreux assistants intégrés pour gérer les données financières. Grâce à Numpy, vous pourrez facilement gérer de grands tableaux multidimensionnels pour le calcul scientifique.

tableau-multidimensionnel

La Dataframe : c’est une structure de données bidimensionnelle, c’est-à-dire que les données sont alignées de façon tabulaire en lignes et en colonnes. On peut la comparer en quelque sorte à un classeur Excel. La Dataframe Pandas est particulièrement puissante car elle permet de :

  • charger des données provenant de différentes sources.
  • réaliser facilement des statistiques et calculer la moyenne, la médiane, le maximum et le minimum de chaque colonne et les corrélations entre chacune d’entre elles.
  • nettoyer facilement les données en supprimant les valeurs manquantes ou en filtrant les lignes ou les colonnes selon certains critères.
  • visualiser les données avec l’aide de Matplotlib. Tracez des barres, des lignes, des histogrammes, des bulles, etc.
  • elle permet de stocker les données nettoyées et transformées dans un CSV, TSV ou XLSX.

La Dataframe vous permet également de créer vos propres fonctions Python pour effectuer certaines tâches de calcul et les appliquer aux données de vos Dataframes.

En utilisant les Séries et les Dataframes on peut donc facilement manipuler des données et les représenter.

Enfin, le Panel est un conteneur important pour les données en 3 dimensions. Les noms des 3 axes sont destinés à décrire les opérations impliquant des données de panel et, en particulier, l’analyse économétrique de ces données. L’analyse économétrique est une analyse quantitative, permettant de vérifier l’existence de certaines relations entre des phénomènes économiques et de mesurer concrètement ces relations sur la base d’observations de faits réels. On peut par exemple observer les notes des élèves d’une classe et les comparer sur les devoirs rendus durant les trois trimestres d’une année scolaire.

Pandas, un langage essentiel en Data Science et en Machine Learning

Pandas est un outil particulièrement populaire en science des données il est particulièrement reconnu pour le traitement et l’analyse des données. En effet, Pandas est très utile dans le nettoyage, la transformation, la manipulation et l’analyse de données. En d’autres mots, Pandas aide les Data Scientists à mettre de l’ordre dans leurs données ce qui représente selon certains près de 80% de leur travail.

En ce qui concerne le Machine Learning, Pandas est tout aussi reconnu comme un outil de choix. Ces fonctions permettent notamment d’explorer, de transformer mais aussi de créer une visualisation de la donnée.

En effet, Pandas est souvent accompagné de la bibliothèque Scikit-learn, c’est le package de machine learning de Python. L’utilisation de Scikit-learn intervient dans un deuxième temps après le passage de Pandas dans la première phase d’exploration de la donnée dans un projet de Data Science.

Se former à Panda avec DataScientest

métier-big-data
Dossier

Métier Big Data : les profils très recherchés par les entreprises

Il est de plus en plus fréquent de trouver des offres d’emploi qui recherchent des spécialistes de la gestion de gros volumes de données ou plus précisément des experts en Big Data. Considéré comme l’un des métiers les plus prometteurs du 21e siècle, l’expert Big Data se présente comme la nouvelle spécialité la plus demandée par les entreprises pour transformer les données en connaissances. Dans cet article, nous apportons des explications sur les emplois les plus demandés dans le Big Data.

Pourquoi les entreprises recherchent-elles différentes spécialités dans le Big Data ?

Il existe de nombreux emplois dont les entreprises n’ont pas besoin pour plusieurs raisons. Cependant, il y en a de nouveaux qui surgissent en raison des besoins exigés par la transformation numérique.

Dans un environnement qui évolue si rapidement sur le plan technologique, les entreprises recherchent de plus en plus des spécialistes capables de travailler avec les gros volumes de données stockés chaque jour. Ces données, dûment analysées et traitées sont en réalité des informations très utiles et représentent de nouvelles opportunités commerciales, des aides dans les prises de décision, une connaissance plus précise du public cible, etc.

Cependant, il y a un manque de personnes spécialisées dans le Big Data sur le marché actuel du travail. Néanmoins, ceux qui sont formés dans ce domaine ont devant eux une opportunité unique et un net avantage dans le domaine professionnel.

opportunité-travail-big-data

Les métiers Big Data les plus recherchés

En raison de l’arrivée d’un besoin total de transformation numérique au sein des entreprises, celles qui n’ont pas encore fait la transition font face aux nouveaux besoins technologiques du Big Data :

  • Collecte de données
  • Gestion des données
  • Analyse de données
  • Traitement de données

Une fois qu’elles sont converties en informations, elles peuvent les utiliser pour comprendre le comportement de leurs clients et prendre des décisions stratégiques.

La demande pour les différents profils de métier Big Data s’est également reflétée dans les classements des organismes de recrutement où des postes tels que le data scientist ou le data analyst figurent parmi les dix les plus demandés par les entreprises.

Mais, tous les emplois dans le Big Data n’ont pas le même profil ou n’effectuent pas les mêmes fonctions. Il existe différentes spécialités dans le metier Big Data. Ci-dessous, nous avons listé les spécialités du métier Big Data les plus demandés par les entreprises.

1.      Chief data officer (CDO)

Il est responsable de toutes les équipes spécialisées dans le Big Data au sein de l’organisation. Sa fonction est de diriger et de gérer les données et les analyses associées à l’activité. Il doit également veiller à ce que l’entreprise soit axée sur les données. En d’autres termes, il est chargé d’exploiter les actifs de données pour créer de la valeur commerciale.

chief-data-officer-metier-big-data

Le rôle d’un CDO combine l’obligation de rendre compte et la responsabilité de la confidentialité et de la protection des informations, de la qualité des données et de la gestion des données. Il s’agit du directeur numérique de l’entreprise. C’est un personnage clé, car ce professionnel est le directeur numérique de l’entreprise.

2.      Data Scientist

Sa fonction consiste à traduire de grands volumes de données et à les convertir en informations utiles pour l’entreprise. Il/elle a des connaissances en mathématiques, statistiques et informatiques (Intelligence artificielle, Machine Learning, etc.). Il a également une vision de l’entreprise et des compétences en communication pour pouvoir faire part des résultats de son travail au reste de l’organisation.

Le data scientist est un autre profil qui est très demandé dans tous les domaines du numérique. Il n’est donc pas surprenant que les entreprises aient du mal à trouver ces professionnels spécialisés sur le marché du travail. Ils ont pour rôle d’apporter des réponses fiables aux problèmes quotidiens. Par exemple, savoir quel est le meilleur moment pour acheter un billet d’avion.

3.      Data analyst

Comme son poste l’indique, il participe à l’analyse des données et recueille les besoins des clients pour les présenter au data scientist. Il est également en charge de :

  • L’extraction, le traitement et le regroupement des données
  • L’analyse de ces groupes de données
  • La production de rapports détaillés

L’analyse des données est devenue une pratique incontournable dans les stratégies marketing des entreprises. Pour cette raison, elle nécessite des professionnels capables non seulement d’extraire ces données, mais de les interpréter.

4.      Data engineer

La tâche de l’ingénieur des données consiste à distribuer les données de manière accessible aux Data Scientists. Son profil est plus spécialisé dans la gestion de bases de données et dans les systèmes de traitement et de programmation. Nous pourrions définir un data engineer comme un professionnel axé sur la conception, le développement et la maintenance de systèmes de traitement de données dans le cadre d’un projet Big Data.

Son objectif est de créer et de maintenir les architectures et les structures technologiques nécessaires au traitement, à l’assimilation et au déploiement à grande échelle d’applications gourmandes en données.

En bref, il conçoit et construit des pipelines de données brutes. À partir de là, il collecte, transforme et prépare les données pour l’analyse.

5.      Data manager

Le rôle principal d’un data manager est de superviser les différents systèmes de données d’une entreprise. Il est chargé d’organiser, de stocker et d’analyser les données de la manière la plus efficace possible.

Le gestionnaire de données possède des connaissances en informatique et 1 à 4 ans d’expérience dans sa spécialité. Il se démarque dans le monde des chiffres, des enregistrements et des données brutes. Mais, il doit également être familiarisé avec l’ensemble du système de données. Parallèlement, il doit avoir un esprit logique et analytique avec de bonnes compétences en résolution de problèmes.

salaire-data-analyst
Dossier

Data analyst : Rôle, metier et son salaire

Le métier de data analyst intéresse beaucoup de personnes actuellement. Dans cet article, nous apportons une vue d’ensemble des tâches de ce professionnel du Big Data et de son salaire mensuel en fonction de son niveau d’expérience.

Qui est le data analyst ?

Le data analyst est un véritable traducteur prêté au numérique qui joue avec les données. En résumé, il prend toutes les données à sa disposition et les traduit en des éléments concrets. Pour ce faire, il extrait les informations pertinentes pour développer des modèles utiles dans les prises de décision.

Il faut savoir que le Big Data est composé d’une quantité de données massives dont le flux passe par les serveurs d’une entreprise. Les données peuvent contenir une variété d’informations sur les clients et sont inestimables pour définir des stratégies de vente et de marketing. Elles incluent par exemple les habitudes d’achat d’une certaine cible ou l’historique d’un certain client. Elles permettent d’acquérir de nouveaux clients et de fidéliser ceux déjà acquis dans le passé. 

Un metier au coeur de la stratégie marketing

Les données fournissent une véritable cartographie d’un certain public cible. Les habitués d’Internet qui vont sur les sites web marchands contribuent à la création de ces immenses bases de données. Celles-ci sont capturées au moment de la visite d’une page et lors d’une recherche. En réalité, même l’utilisation des réseaux sociaux produit d’énormes quantités de données comme tout autre service utilisé sur Internet. Et elles sont utiles pour les entreprises dans l’élaboration d’une stratégie marketing efficace.

strategie-data-marketing

Le Big Data a pour but de permettre aux entreprises de faire une opération également appelée profilage. En d’autres termes, ces données sont capturées et interprétées. Puis, elles sont utilisées pour tracer l’identité d’une cible potentielle vers laquelle se tourner. En résumé, grâce au Big Data, il est possible d’anticiper les besoins des clients. Par conséquent, on peut leur proposer des services ou produits ciblés, adaptés à un créneau spécifique. Sans le Big Data, les entreprises seraient autrement obligées de procéder par essais, faire des erreurs et dépenser des sommes très élevées. C’était une prémisse nécessaire. Mais aujourd’hui, grâce au data analyst qui use d’outils spécifiques, il est possible de donner un sens à ces données et de les utiliser à différentes fins.

Que fait l’analyste de donnée ?

Un analyste des données prend des éléments du Big Data sous forme brute. Ensuite, il les affine, les étudie et les convertit en données compréhensibles pour l’entreprise pour laquelle il travaille. Chaque organisation en a besoin, car cet expert peut faire économiser beaucoup d’argent grâce à son expertise d’analyste. Il est clair que ces facteurs délimitent certaines compétences qui doivent nécessairement appartenir à un data analyst.

Premièrement, il doit avoir une grande confiance dans les chiffres et par conséquent avec les mathématiques. Il est aussi évident qu’il doit posséder de grandes capacités de communication tout comme ceux qui traduisent un texte. Si d’une part, il est nécessaire de comprendre une analyse, d’autre part il est également nécessaire de le rendre compréhensible pour ceux qui devront l’utiliser à leurs propres fins stratégiques. Par conséquent, un data analyst permet aux entreprises de recevoir des données raffinées. Ainsi, elles peuvent être utilisées pour prendre toutes sortes de décisions, en particulier commerciales.

Cependant, c’est un discours qui peut être appliqué à n’importe quel domaine. Cela va de la logistique au marketing en passant par le commerce. On peut également inclure l’exportation et le transport. Entre autres, un data analyst doit avoir une spécialisation spécifique dans un secteur.

Quel est le salaire du data analyst?

L’apparition du premier poste de data analyst date de seulement quelques années. Mais actuellement, c’est l’un des métiers les plus demandés du marché. Bien sûr, il existe des différences liées au pays et à l’activité de l’entreprise. Un data analyst débutant dans des pays comme la France peut gagner entre 35 000 et 40 000 par an (en euro). Et le salaire annuel d’un data analyst ayant 4 ans d’expérience peut aller de 45 000 à 55 000 euros.

En ce sens, pour qu’un data analyste puisse augmenter le salaire qu’il perçoit annuellement, il doit acquérir de nouvelles expériences. Celles-ci viennent enrichir à la fois ses acquis, mais aussi sa capacité à faire face aux aléas de sa profession. En effet, le salaire d’un data analyst ayant 5 années d’expérience ou plus peut atteindre 60 000 euros annuel, voire plus selon les conditions et les résultats.

Cependant, il faut savoir faire la distinction des niveaux de salaire en fonction du domaine dans lequel le data analyst met en application son savoir-faire. Les salaires les plus élevés sont payés dans des secteurs tels que les TIC, les assurances et les banques selon une analyse faite par Burning Glass Technologies. Viennent ensuite les salaires plus ou moins élevés dans le commerce et le marketing pour l’amélioration des ventes.

En conclusion, le métier de data analyste est exigeant en tous points de vue, mais certainement intéressant pour une raison économique.

Comment devenir un data analyst ?

Rien n’empêche une personne ayant un niveau bac de projeter de devenir un data analyst. Mais, un diplôme en informatique, en statistique ou en mathématiques semble être une base fondamentale pour aspirer à cette profession. Ensuite, il doit enrichir ses compétences en s’inscrivant dans une formation spécialisée une fois ce diplôme obtenu.

Il est également utile de maîtriser un langage informatique comme Python afin de développer des outils d’apprentissage automatique ou Machine Learning. Bien évidemment, il est important de savoir utiliser les logiciels graphiques pour pouvoir ensuite créer des infographies permettant de traduire les données en concepts. Sans ces outils, un data analyst ne pourrait jamais les expliquer correctement aux dirigeants d’une entreprise. Enfin, il faut préciser que l’analyste de données doit se mettre à jour en permanence comme le ferait un informaticien ou un expert en marketing.

Dossier

Power BI : Définition et 6 raisons d’utilisation

Jusqu’à présent, les données sont la meilleure source de connaissances pour les entreprises. En effet, elles en génèrent plus que jamais, d’où l’apparition du terme Big Data. Cependant, accumuler de telles quantités d’informations numériques à très peu d’utilité à moins que ces organisations en comprennent le sens. C’est là qu’interviennent les logiciels de Business Intelligence en self-service tels que Power BI.

Qu’est-ce que Power BI ?

Power BI est le nom commun attribué à une variété d’applications et de services basés sur le Cloud. Ces derniers sont conçus pour aider les entreprises à collecter, gérer et analyser diverses sources de données via une interface facile à utiliser. Il permet de rassembler les données et de les traiter. Mais surtout, il est utile pour transformer les données en informations intelligibles souvent à l’aide de graphiques et de tableaux visuellement précis et faciles à traiter. Cela permet aux utilisateurs de créer des rapports interactifs et de les partager à toutes les parties prenantes d’une entreprise.

Cette application Microsoft se connecte à une variété de sources de données. Il peut s’agir de feuilles de calcul Excel ou de bases de données sur un data warehouse. Il peut également se connecter à des applications à la fois dans le Cloud et sur les serveurs de l’entreprise.

Cette appellation est un terme général et peut faire référence à une application de bureau Windows appelée Power BI Desktop. Il peut s’agir d’un outil ETL (Extract, Transform and Load) dénommé Power Query ou d’un service en ligne SaaS (Software as a Service) appelé Power BI Service. Il peut aussi s’agir d’applications mobiles Power BI pour les Smartphones et tablettes Windows ainsi que pour les appareils iOS et Android.

interface-power-bi

Power BI est basé sur Microsoft Excel. En tant que tel, la courbe d’apprentissage d’Excel vers Power BI n’est pas si raide. Quiconque peut utiliser Excel peut utiliser Power BI. Mais, ce dernier est beaucoup plus puissant que la feuille de calcul.

Que fait cette application d’analyse de données ?

Dans tout environnement d’entreprise, il est essentiel d’unifier toutes les informations disponibles autour d’une même plateforme que ce soit dans le Cloud ou en local. Pour ce faire, Power BI est l’outil idéal. Il permet d’appliquer les connaissances de la Business Intelligence (BI) en exploitant des données en temps réel provenant de différentes sources et en créant des rapports. Sur un simple tableau de bord se trouvent les résultats de tous les éléments à analyser et partager entre plusieurs professionnels d’une même entreprise.

En effet, cette application d’analyse de données est utilisée pour la création de rapports basés sur les données de l’entreprise. En utilisant Power BI, l’utilisateur peut se connecter à un large éventail d’ensembles de données et classer les informations fournies par le biais de la data visualisation afin qu’elles puissent être mieux comprises et assimilées. Le tableau de bord généré à partir de ces données peut être partagé avec d’autres utilisateurs.

Power BI aide les entreprises à voir non seulement ce qui s’est déroulé dans le passé et ce qui se passe dans le présent, mais également ce qui pourrait se produire dans le futur. Cet outil d’analyse de données est doté de fonctionnalités d’apprentissage automatique. Il permet ainsi à son utilisateur de détecter un modèle de données et d’utiliser ce modèle pour effectuer des prédictions éclairées et exécuter des scénarios de simulation. Ces estimations permettent à l’entreprise pour laquelle il travaille de générer des prévisions. Elle aura ainsi la capacité de se préparer à répondre à la demande future et à adopter des mesures clés.

6 raisons d’utiliser Power BI 

Pour les entreprises qui souhaitent plus de puissance de reporting et de force analytique que ce qu’offre Excel, Power BI est à un tout autre niveau du Business Intelligence. Avec cet outil, les entreprises peuvent collecter, analyser et visualiser l’ensemble de leurs données, ce qui leur donne un meilleur aperçu de leur productivité et de leur compétitivité. Ainsi, elles peuvent prendre des décisions plus éclairées basées sur des données réelles.

Pour mieux comprendre la puissance de Power Bi, voici quelques-uns de ses principaux avantages :

  • Les entreprises peuvent gérer de grandes quantités de données via cette application qu’en utilisant d’autres plateformes d’analyse de données.
  • Les informations peuvent être visualisées à l’aide de modèles afin que les entreprises puissent mieux comprendre leurs données.
  • Il est basé sur le service Cloud de sorte que les utilisateurs bénéficient de capacités d’intelligence de pointe et d’algorithmes puissants régulièrement mis à jour.
  • Plusieurs personnalisations permettent aux utilisateurs de créer des tableaux de bord afin d’accéder rapidement aux données dont ils ont besoin.
  • Il propose une interface intuitive qui le rend beaucoup plus facile à utiliser que les feuilles de calcul complexes.
  • Il garantit la sécurité des données en offrant des contrôles d’accessibilité internes et externes.

avantages-power-bi

Pour résumer, Power BI est la solution professionnelle pour visualiser et transformer les données. Mais, il sert surtout à partager des informations avec tous les services de l’entreprise, de manière efficace et rapide. Grâce à ses tableaux de bord intuitifs et à son contrôle d’accessibilité, tout le monde dispose d’informations en temps réel. Toutes les parties prenantes pourront les consulter à tout moment et en tout lieu.

L’analyse des données pour soutenir la prise de décision

Power BI est l’un des plus pratiques et performants outils Microsoft pour l’analyse de données. Il s’est imposé comme le leader du secteur. Il reflète d’ailleurs les connaissances et l’expérience de Microsoft dans ce domaine à travers des solutions telles qu’Excel ou SQL Server et ses compléments (SSAS, SSIS et SSRS).

Power BI facilite la transformation des données en informations grâce à des modèles analytiques. Cela va de l’information à la connaissance en passant par des rapports analytiques avec des graphiques, des tableaux, etc. L’objectif de Microsoft est d’offrir un outil de prise de décisions intelligentes en réduisant les risques. Il apporte une réponse efficace aux besoins d’un des professionnels qui interviennent dans ce domaine : le data analyst.

À part cela, Power Bi est également un outil multiplateforme pour la surveillance de l’entreprise en temps réel par les parties prenantes partout et à tout moment.

L’autre atout de Power BI dans l’analyse des données est son intégration totale avec la suite Office 365. Il donne accès à SharePoint, à un calendrier, à Microsoft Flow pour les flux de travail et à une longue liste de fonctionnalités et de possibilités sans quitter l’environnement Office 365.

Par ailleurs, Microsoft s’est fortement engagé envers les techniques d’apprentissage automatique. Power BI offre de multiples fonctionnalités dans ce domaine :

  • L’analyse automatique des informations
  • Le calcul des corrélations
  • L’identification de valeurs aberrantes
  • Le regroupement
  • L’intégration de Python pour l’importation de données et la création de graphiques
  • Etc.
Définitions

Data Scientist, Data Analyst et autres définitions

Qui dit nouveau métier, dit nouveau vocabulaire!

L’objectif de ce post est de lister un panel représentatif des dénominations de métiers trouvées (sans pour autant aborder les qualités requises ainsi que les responsabilités, qui feront l’objet de posts ultérieurs!) pour tenter d’y voir un peu plus clair.

Au fond, l’équation Data Scientist = Data Analyst = Dataminer = Data Architect … est-elle vérifiée?

Continue Reading