Search results for

data engineer

metier-data-engineer
Définitions

Qu’est-ce qu’un data engineer et que fait-il ?

Le métier de data engineer est l’une des spécialisations qui se généralise dans l’écosystème Big Data. Selon un rapport de LinkedIn sur les offres d’emploi émergentes de 2020, le poste de data engineer fait partie des 15 professions les plus importantes des cinq dernières années. Il se place aux côtés des autres nouveaux métiers tels que les experts de la data science et de l’Intelligence Artificielle (IA) ainsi que des ingénieurs en fiabilité de site.

Cependant, beaucoup de gens se demandent encore s’ils seraient à l’aise de travailler en tant que data engineer. Est-ce un cheminement de carrière intéressant ? Nous apportons des éléments de réponse dans cet article en définissant succinctement ce qu’il est, ce qu’il fait ainsi que les connaissances et compétences qu’il doit avoir.

Qu’est-ce qu’un data engineer ?

L’ingénieur de données est le professionnel chargé de l’acquisition, du stockage, de la transformation et de la gestion de données dans une organisation. Ce professionnel assume la configuration de l’infrastructure technologique nécessaire pour que les volumes de données de l’entreprise deviennent une matière première accessible pour d’autres spécialistes du Big Data tels que les data analysts et les data scientists.

Les data engineers travaillent sur la conception de pipelines de données, sur la création et la maintenance de l’architecture de ces données. Pour faire simple, le data engineering consiste à veiller à ce que les travaux ultérieurs d’exploitation, d’analyse et d’interprétation des informations puissent être effectués sans incident.

Que fait un data engineer au quotidien ?

Le quotidien d’un data engineer consiste à travailler avec des outils ETL (Extract – Transform – Load). Grâce à une technologie d’intelligence artificielle basée sur des algorithmes de Machine learning, il développe des tâches d’extraction, de transformation et de chargement de données. Ensuite, il les déplace entre différents environnements et les nettoie de toute erreur pour qu’elles arrivent normalisées et structurées aux mains du data scientist et data analyst.

taches-data-engineer

En ce sens, le rôle du data engineer est comparable à celui d’un plombier. Il consiste à mettre en place et à entretenir le réseau de canalisations à travers lequel les données vont passer. Ainsi, il garantit le bon fonctionnement de l’ensemble de l’organisation.

1.      Extraction

Dans la première étape du processus ETL, le data engineer prend les données de différents endroits et étudie l’incorporation de nouvelles sources dans le flux de données de l’entreprise. Ces données sont présentées dans différents formats et intègrent des variables très diverses. Ensuite, elles vont vers des data lakes ou un autre type de référentiel où le stockage de données est fait de manière brute et facilement accessible pour toute utilisation future.

2.      Transformation

Dans la deuxième étape, le data engineer procède au nettoyage des données. Il élimine les doublons et corrige les erreurs. Puis, il les classe pour les transformer en un ensemble homogène.

3.      Chargement

Dans la dernière étape, le data engineer charge les données vers leur destination. Il peut s’agir des propres serveurs de l’entreprise ou du Cloud. À part cela, il doit également veiller sur un point important de cette étape finale : la sécurité des données. En effet, il doit garantir que les informations soient correctement protégées des cyberattaques et des accès non autorisés.

Quelles connaissances doit avoir un data engineer ?

Tout d’abord, il doit avoir une connaissance courante des bases de données relationnelles et du langage de requête SQL. Cela lui permet de connaître les techniques de modélisation de données les plus utilisées et de savoir comment accéder aux données sources lorsqu’elles sont disponibles.

Il doit aussi connaître les techniques de nettoyage, de synthèse et de validation des données. Ainsi, les informations parviennent à leurs utilisateurs de manière adaptée pour leur exploitation correcte.

Il doit également savoir utiliser de manière optimale les moteurs de traitement de Big Data tels que Spark ou Flink.

Quelles technologies sont essentielles pour un data engineer ?

Les technologies utilisées par le data engineer comprennent les bases de données non relationnelles et les méthodes de modélisation des données. Parmi ces technologies, on peut citer comme exemple HBASE, Cassandra ou MongoDb. Il est aussi intéressant qu’il sache utiliser les moteurs d’indexation tels que SolR et ElasticSearch.

elasticsearch-data-engineering

Dans les systèmes de collecte de données d’aujourd’hui, il est très important pour ce professionnel de maîtriser les technologies qui lui permettent d’y accéder en temps réel. On parle généralement de technologies de streaming comme Flume, Kafka ou Spark Structured Streaming.

Son système d’exploitation habituel est Linux où il doit maîtriser parfaitement l’environnement. Côté langages de programmation, les plus communs sont Java, Scala ou Kotlin pour le développement de processus de traitement de données. Concernant Python, il sert pour l’analyse et la préparation préalable des données.

Par ailleurs, il est de plus en plus important qu’il ait une connaissance du développement d’applications natives pour le Cloud. Aujourd’hui, c’est un mouvement que de nombreuses entreprises suivent. Connaître les différences entre le développement d’applications locales et basées sur le Cloud est nécessaire. La principale raison est la transition en toute sécurité.

Enfin, l’ingénieur de données doit pouvoir évoluer en toute confiance dans un grand nombre de domaines différents de l’informatique. Il ne doit jamais cesser d’apprendre et d’ajouter de nouveaux outils à ses bagages professionnels.

data-engineer
Dossier

Data engineer: son salaire et ses missions

La quantité de données augmente de façon exponentielle et de plus en plus d’entreprises recherchent des experts capables de les aider à comprendre, analyser et utiliser le potentiel d’une telle quantité d’informations. Le data engineer est un expert essentiel pour ces organisations. Cependant, entre les tâches et le salaire d’un data engineer, il existe quelques différences . La distinction est simple : alors que le data scientist est plus orienté vers le développement d’algorithmes pour l’analyse de données, le data engineer est en quelque sorte le pont liant le Big Data au scientifique des données.

Que sont le data engineer et le data engineering ?

Bien qu’on n’en parle pas beaucoup, l’ingénieur des données est un expert fondamental de la data science. C’est un profil très demandé dans tout environnement où les données doivent être traitées. Nous pourrions définir un data engineer comme un professionnel axé sur la conception, le développement et la maintenance de systèmes de traitement de pipelines de données dans le cadre d’un projet Big Data.

L’objectif du data engineering est de créer et de maintenir les structures de données et les architectures technologiques. Celles-ci sont nécessaires au traitement, à la gestion et au déploiement à grande échelle d’applications gourmandes en données. Autrement dit, les data engineers conçoivent et construisent les référentiels de données brute. À partir de là, il les collecte, transforme et prépare pour l’analyse. Une fois prêtes, les data scientists se chargent de mettre en place des modèles.

data-engineering

En bref, les scientifiques des données forment des modèles à partir des données préparées par les ingénieurs de données. Ils ont ainsi plus de faciliter à extraire des connaissances sur un problème à résoudre à partir de ces informations. Ils le font en utilisant des outils mathématiques et une connaissance du domaine des affaires. Mais, pour qu’il soit possible de définir et de former les modèles, il est nécessaire de disposer d’un ensemble de données valide sur lequel travailler, d’où l’importance du rôle des data engineers.

Quelles compétences doit-il avoir ?

Pour se consacrer au data engineering, un data engineer doit avoir une vision pratique et spécialisée du domaine des données et des nouveaux besoins des entreprises. Par exemple, il doit savoir comment les données sont modélisées et comment fonctionnent les bases de données SQL.

D’autre part, le data engineer effectue et planifie aussi des acquisitions de données. Il effectue également des processus de nettoyage et de validation des données. Tout cela a pour objectif de fournir des informations correctes au data scientist. Il configure également le cluster dans Spark afin que les modèles statistiques s’exécutent efficacement.

Parmi les technologies qu’il utilise, il doit maîtriser Linux et Git s’il souhaite travailler sur des projets logiciels. Il doit également savoir utiliser :

  • Hadoop et Spark au niveau de l’environnement
  • HDFS, MongoDB et Cassandra au niveau des technologies NoSQL
  • Map Reduce au niveau de modèles de calcul.

En même temps, il doit avoir une connaissance des outils d’apprentissage automatique et de Big Data. Il en va de même pour les outils de streaming des données tels que Hive ou Kafka.

Par ailleurs, selon l’entreprise, il est généralement indispensable de maîtriser l’un des langages suivants :

  • Python : pour le traitement des données
  • Scala : comme langue native de Spark et Java

Quel est le salaire d’un data engineer en France ?

Selon une estimation de Glassdoor, un data engineer en France gagne un salaire moyen de 44 000 euros par an. Mais, en fonction de l’expérience et du niveau de compétences, cet expert des données peut espérer entre 36 000 et 75 000 par an.

Cependant, outre les facteurs cités précédemment, le lieu de travail influence également le niveau de salaire d’un data engineer selon l’Economic Research Intitute. En effet, il peut obtenir plus de 90 000 euros par an s’il travaille dans une grande ville telle que Paris. Toutefois, PayScale et Glassdoor évaluent la fourchette des salaires d’un ingénieur des données à 45 000 et 50 000 par an dans les grandes agglomérations de l’Hexagone.

salaire-data-engineer

D’ailleurs, Opinionway a mené une étude en 2018 sur des data engineers travaillant dans 45 entreprises. Cette enquête a permis de mettre en exergue une augmentation de 10% du salaire en fonction des années d’expérience. Elle a également confirmé le fait que les data engineers seniors (plus de 5 ans d’expérience) sont les plus recherchés.

Toujours d’après cette étude, un data engineer junior peut espérer environ 38 000 euros par an. Après 2 années dans la même entreprise, il peut avoir une augmentation de 12%. En ayant plus de 2 ans d’expérience, il peut voir son salaire atteindre les 58 000 euros par an.

En comparaison à ceux dans Paris, les data engineers juniors dans les provinces ont un salaire inférieur de 4%. Pour les confirmés et seniors, l’écart est plus important et peut atteindre 8,5%.

Combien gagne un ingénieur des données chez les GAFA ?

Devenir un data engineer senior prend du temps. Et si l’objectif est de travailler chez les géants du Web tels qu’Amazon et Facebook, ça en vaut la peine !

L’important est d’acquérir plus de compétences en se mettant constamment à jour sur les nouveaux outils disponibles. Parallèlement, les expériences doivent refléter la maîtrise du data engineering.

Paysa a déjà effectué une étude des salaires des data engineers chez les GAFA. Il est clair qu’ils sont tout à fait à la hauteur des tâches qui les attendent dans ces grandes entreprises. Annuellement, ils peuvent gagner 139 513 dollars par an, une moyenne estimée sur 634 ingénieurs des données. Chez le numéro 1 des réseaux sociaux, un data engineer peut espérer 210 895 dollars annuels, une moyenne déduite à partir d’une enquête menée auprès de 94 ingénieurs des données de l’entreprise.

métier-big-data
Dossier

Métier Big Data : les profils très recherchés par les entreprises

Il est de plus en plus fréquent de trouver des offres d’emploi qui recherchent des spécialistes de la gestion de gros volumes de données ou plus précisément des experts en Big Data. Considéré comme l’un des métiers les plus prometteurs du 21e siècle, l’expert Big Data se présente comme la nouvelle spécialité la plus demandée par les entreprises pour transformer les données en connaissances. Dans cet article, nous apportons des explications sur les emplois les plus demandés dans le Big Data.

Pourquoi les entreprises recherchent-elles différentes spécialités dans le Big Data ?

Il existe de nombreux emplois dont les entreprises n’ont pas besoin pour plusieurs raisons. Cependant, il y en a de nouveaux qui surgissent en raison des besoins exigés par la transformation numérique.

Dans un environnement qui évolue si rapidement sur le plan technologique, les entreprises recherchent de plus en plus des spécialistes capables de travailler avec les gros volumes de données stockés chaque jour. Ces données, dûment analysées et traitées sont en réalité des informations très utiles et représentent de nouvelles opportunités commerciales, des aides dans les prises de décision, une connaissance plus précise du public cible, etc.

Cependant, il y a un manque de personnes spécialisées dans le Big Data sur le marché actuel du travail. Néanmoins, ceux qui sont formés dans ce domaine ont devant eux une opportunité unique et un net avantage dans le domaine professionnel.

opportunité-travail-big-data

Les métiers Big Data les plus recherchés

En raison de l’arrivée d’un besoin total de transformation numérique au sein des entreprises, celles qui n’ont pas encore fait la transition font face aux nouveaux besoins technologiques du Big Data :

  • Collecte de données
  • Gestion des données
  • Analyse de données
  • Traitement de données

Une fois qu’elles sont converties en informations, elles peuvent les utiliser pour comprendre le comportement de leurs clients et prendre des décisions stratégiques.

La demande pour les différents profils de métier Big Data s’est également reflétée dans les classements des organismes de recrutement où des postes tels que le data scientist ou le data analyst figurent parmi les dix les plus demandés par les entreprises.

Mais, tous les emplois dans le Big Data n’ont pas le même profil ou n’effectuent pas les mêmes fonctions. Il existe différentes spécialités dans le metier Big Data. Ci-dessous, nous avons listé les spécialités du métier Big Data les plus demandés par les entreprises.

1.      Chief data officer (CDO)

Il est responsable de toutes les équipes spécialisées dans le Big Data au sein de l’organisation. Sa fonction est de diriger et de gérer les données et les analyses associées à l’activité. Il doit également veiller à ce que l’entreprise soit axée sur les données. En d’autres termes, il est chargé d’exploiter les actifs de données pour créer de la valeur commerciale.

chief-data-officer-metier-big-data

Le rôle d’un CDO combine l’obligation de rendre compte et la responsabilité de la confidentialité et de la protection des informations, de la qualité des données et de la gestion des données. Il s’agit du directeur numérique de l’entreprise. C’est un personnage clé, car ce professionnel est le directeur numérique de l’entreprise.

2.      Data Scientist

Sa fonction consiste à traduire de grands volumes de données et à les convertir en informations utiles pour l’entreprise. Il/elle a des connaissances en mathématiques, statistiques et informatiques (Intelligence artificielle, Machine Learning, etc.). Il a également une vision de l’entreprise et des compétences en communication pour pouvoir faire part des résultats de son travail au reste de l’organisation.

Le data scientist est un autre profil qui est très demandé dans tous les domaines du numérique. Il n’est donc pas surprenant que les entreprises aient du mal à trouver ces professionnels spécialisés sur le marché du travail. Ils ont pour rôle d’apporter des réponses fiables aux problèmes quotidiens. Par exemple, savoir quel est le meilleur moment pour acheter un billet d’avion.

3.      Data analyst

Comme son poste l’indique, il participe à l’analyse des données et recueille les besoins des clients pour les présenter au data scientist. Il est également en charge de :

  • L’extraction, le traitement et le regroupement des données
  • L’analyse de ces groupes de données
  • La production de rapports détaillés

L’analyse des données est devenue une pratique incontournable dans les stratégies marketing des entreprises. Pour cette raison, elle nécessite des professionnels capables non seulement d’extraire ces données, mais de les interpréter.

4.      Data engineer

La tâche de l’ingénieur des données consiste à distribuer les données de manière accessible aux Data Scientists. Son profil est plus spécialisé dans la gestion de bases de données et dans les systèmes de traitement et de programmation. Nous pourrions définir un data engineer comme un professionnel axé sur la conception, le développement et la maintenance de systèmes de traitement de données dans le cadre d’un projet Big Data.

Son objectif est de créer et de maintenir les architectures et les structures technologiques nécessaires au traitement, à l’assimilation et au déploiement à grande échelle d’applications gourmandes en données.

En bref, il conçoit et construit des pipelines de données brutes. À partir de là, il collecte, transforme et prépare les données pour l’analyse.

5.      Data manager

Le rôle principal d’un data manager est de superviser les différents systèmes de données d’une entreprise. Il est chargé d’organiser, de stocker et d’analyser les données de la manière la plus efficace possible.

Le gestionnaire de données possède des connaissances en informatique et 1 à 4 ans d’expérience dans sa spécialité. Il se démarque dans le monde des chiffres, des enregistrements et des données brutes. Mais, il doit également être familiarisé avec l’ensemble du système de données. Parallèlement, il doit avoir un esprit logique et analytique avec de bonnes compétences en résolution de problèmes.

data-analyst
Dossier

Qu’est-ce qu’un data analyst ?

Le domaine du Big Data, le Cloud Computing et l’intelligence artificielle ne cessent de croître. Grâce à cela, de nouveaux métiers apparaissent chaque jour comme l’analyste de données ou data analyst  qui est devenu l’un des profils les plus demandés du secteur.

Qu’est-ce qu’un data analyst ?

Le data analyst est un profil professionnel qui, grâce à l’interprétation des données, peut établir des stratégies au sein d’une entreprise comme une stratégie marketing par exemple. Par conséquent, il doit savoir collecter des données et les analyser.

Un data analyst travaille avec de grandes quantités de données brutes, mais les données en elles-mêmes ne disent rien. L’entreprise a besoin d’un expert qui trouve des modèles à travers ces données pour pouvoir effectuer certaines actions, car leur interprétation est un outil de prise de décision.

Quelles sont les tâches quotidiennes d’un data analyst ?

Aujourd’hui, la plupart des entreprises sont constamment derrière l’utilisateur. Par conséquent, il est essentiel d’avoir un département d’analyse de données dirigé par un chief data officer travaillant aux côtés de data analysts qui interprètent les données statistiques recueillies afin d’établir des modèles de comportement des clients.

L’analyste de données est en charge de :

          L’extraction, le traitement et le regroupement des données

          L’analyse de ces groupes de données

          L’établissement de rapports d’analyse

Il ne fait aucun doute qu’un analyste de données doit développer ses compétences mathématiques et statistiques. De cette manière, il parvient à effectuer une analyse complète des données extraites. Pour ce faire, il utilise plusieurs outils d’analyse ainsi que des langages de programmation utilisés dans la data science comme Python.

data-analyst

En plus de ces compétences en outils et statistiques, des qualités telles que le travail d’équipe doivent aussi être prises en compte. Et pour cause, un data analyst doit travailler main dans la main avec le département chargé des projets de Business Intelligence.

L’analyste de données est une figure nécessaire dans n’importe quel secteur. En ce sens, il doit être prêt à présenter des données à n’importe quel niveau de l’entreprise. Savoir communiquer efficacement devrait être l’un de ses points forts, car il ne traitera pas seulement avec le data scientist ou le data engineer, mais avec toutes les parties prenantes pour la bonne marche des activités.

L’analyste de données doit également être intrigué et curieux sur ce qui se cache derrière toutes les informations générées par une entreprise. Ce sont des capacités qui sont propres à une personne innovante telle qu’un data analyst.

Pourquoi les entreprises recherchent-elles des data analysts ?

Un data analyst apporte de la valeur à son travail. Et pour cause, un bon analyste de données a cinq caractéristiques que chaque entreprise recherche.

1.      Curiosité pour analyser et interpréter les données

La première grande raison pour laquelle un data analyst est important dans une entreprise est qu’il prend les données, les analyse et en tire le meilleur parti. Il s’agit d’un élément important de son profil dans la mesure où il s’occupe de la grande quantité de données stockées et gérées par les entreprises.

2.      Capacité à résoudre des problèmes

L’un des traits les plus courants d’un bon analyste de données est qu’il est une personne orientée vers la résolution de problèmes. Le data analyst se démarque de cette capacité à résoudre les problèmes qui apparaissent, l’un des points qui caractérisent un bon travailleur.

3.      Capacité à résoudre les problèmes techniques

En plus de savoir analyser, interpréter et contourner les problèmes simples, un bon data analyst se distingue aussi par sa capacité à résoudre des problèmes techniques. Il doit avoir des connaissances en programmation et sait utiliser le langage informatique comme SQL.

4.      Capacité à s’adapter à n’importe quel secteur

En plus de savoir travailler sur des données, de prendre des décisions et d’utiliser le langage informatique, une autre caractéristique qui fait que les postes de data analyst sont nombreux est que l’analyste de données sait s’adapter à n’importe quel secteur d’activité. La capacité d’adaptation rapide à une entreprise, quel que soit son domaine, est une autre raison pour laquelle le métier d’analyste de données est valorisé.

Quel est le salaire d’un data analyst ?

La profession d’analyste de données est en plein essor et a un avenir pour les prochaines années. Le salaire annuel d’un data analyst junior peut commencer à partir de 35 000 euros. Au bout de quelques années, il peut atteindre 50 000 euros en fonction de l’expérience antérieure.

Il faut garder à l’esprit que ce métier sera de plus en plus sollicité grâce à la transformation digitale que vivent actuellement de nombreuses entreprises. Dans certaines organisations, un data analyst peut même facturer son travail jusqu’à 60 000 euros par an. Mais, encore une fois, tout dépend de l’expérience, un élément important que de nombreuses entreprises exigent. De plus, le salaire d’un analyste de données ne peut pas être dit en des termes généraux, car il peut également dépendre de divers facteurs liés à l’entreprise.

Conseils

Pourquoi faut-il maîtriser les notions clés de Data Science ?

article rédigé par David Sitbon, Data Analyst Indépendant
dsconsult.contact@gmail.com / 06.25.60.59.61

Avec l’essor des technologies numériques, la collecte et la gestion de données sont devenues des enjeux économiques stratégiques pour de nombreuses entreprises. Ces pratiques ont engendrées la naissance d’un tout nouveau secteur et de nouveaux emplois : la Data science

IBM prévoyait une hausse de 28 % de la demande de profil Data Scientist en 2020. En effet, de nombreuses entreprises ont compris l’importance stratégique de l’exploitation de la donnée. La Data science étant au cœur de la chaîne d’exploitation de la donnée, cela explique la hausse de la demande des profils compétents dans ce domaine.

Tour d’horizon de la Data science 

La Data science, ou science de la donnée, est le processus qui consiste à utiliser des algorithmes, des méthodes et des systèmes pour extraire des informations stratégiques à l’aide des données disponibles. Elle utilise l’analyse des données et le machine learning (soit l’utilisation d’algorithmes permettant à des programmes informatiques de s’améliorer automatiquement par le biais de l’expérience) pour aider les utilisateurs à faire des prévisions, à renforcer l’optimisation, ou encore à améliorer les opérations et la prise de décision.

Les équipes actuelles de professionnels de la science de la donnée sont censées répondre à de nombreuses questions. Leur entreprise exige, le plus souvent, une meilleure prévision et une optimisation basée sur des informations en temps réel appuyées par des outils spécifiques.

La science de la donnée est donc un domaine interdisciplinaire qui connaît une évolution rapide. De nombreuses entreprises ont largement adopté les méthodes de machine learning et d’intelligence artificielle (soit l’ensemble des techniques mises en œuvre en vue de réaliser des machines capables de simuler l’intelligence humaine) pour alimenter de nombreuses applications. Les systèmes et l’ingénierie des données font inévitablement partie de toutes ces applications et décisions à grande échelle axées sur les données. Cela est dû au fait que les méthodes citées plus tôt sont alimentées par des collections massives d’ensembles de données potentiellement hétérogènes et désordonnées et qui, à ce titre, doivent être gérés et manipulés dans le cadre du cycle de vie global des données d’une organisation.

Ce cycle de vie global en data science commence par la collecte de données à partir de sources pertinentes, le nettoyage et la mise en forme de celles-ci dans des formats que les outils peuvent comprendre. Au cours de la phase suivante, des méthodes statistiques et d’autres algorithmes sont utilisés pour trouver des modèles et des tendances. Les modèles sont ensuite programmés et créés pour prédire et prévoir. Enfin, les résultats sont interprétés.

Pourquoi choisir l’organisme DataScientest pour se former en Data science ?

Vous êtes maintenant convaincu de l’importance de la maîtrise de la Data science pour renforcer votre profil employable et pour aider votre entreprise.

Les formations en Data Science de l’organisme DataScientest  sont conçues pour former et familiariser les professionnels avec les technologies clés dans ce domaine, dans le but de leur permettre de profiter pleinement des opportunités offertes par la science de la donnée et de devenir des acteurs actifs dans ce domaine de compétences au sein de leurs organisations. 

Ces formations, co-certifiées par la Sorbonne, ont pour ambition de permettre, à toute personne souhaitant valoriser la manne de données mise actuellement à sa disposition, d’acquérir un véritable savoir-faire opérationnel et une très bonne maîtrise des techniques d’analyse de données et des outils informatiques nécessaires.

L’objectif que se fixe DataScientest est de vous sensibiliser en tant que futurs décideurs des projets data, aux fortes problématiques des données à la fois sous l’angle technique (collecte, intégration, modélisation, visualisation) et sous l’angle managérial avec une compréhension globale des enjeux.

Pourquoi choisir la formule « formation continue » chez Datascientest ? 

Pendant 6 mois, vous serez formés à devenir un(e) expert(e) en data science, en maîtrisant les fondements théoriques, les bonnes pratiques de programmation et les enjeux des projets de data science.

Vous serez capable d’accompagner toutes les étapes d’un projet de data science, depuis l’analyse exploratoire et la visualisation de données à l’industrialisation d’outils d’intelligence artificielle (IA) et de machine learning, en faisant des choix éclairés d’approches, de pratiques, d’outils et de technologies, avec une vision globale : data science, data analyse, data management et machine learning. Vous pourrez cibler les secteurs extrêmement demandés de la data science.

Ce type de formation vous permettra d’acquérir les connaissances et les compétences nécessaires pour devenir data analyst, data scientist, data engineer, ou encore data manager. En effet, elles couvrent les principaux axes de la science de la donnée.

Autonomie et gestion de son temps 

Que votre souhait de vous former en data science provienne d’une initiative personnelle ou qu’il soit motivé par votre entreprise, si la data science est un domaine totalement nouveau pour vous, il conviendrait de vous orienter vers le format « formation continue » de DataScientest. Effectivement, cela vous permettra de consacrer le temps qu’il vous faut pour appréhender au mieux toutes les notions enseignées. Sur une période de 6 mois, à partir de votre inscription (il y a une rentrée par mois), vous pourrez gérer votre temps comme bon vous semble, sans contrainte, que vous ayez une autre activité ou non. 

Aussi, pour de nombreux salariés, il est difficile de bloquer plusieurs jours par semaine pour se former. C’est pourquoi, de plus en plus d’entreprises sollicitent des formations en ligne, à distance, pour plus d’efficacité ; vous aurez la possibilité de gérer votre temps de manière à adapter au mieux vos besoins d’apprentissage avec votre temps disponible. 

Profiter de l’expertise de dizaines de data scientists 

La start-up a déjà formé plus de 1500 professionnels actifs et étudiants aux métiers de Data Analysts et Data Scientists et conçu plus de 2 000 heures de cours de tout niveau, de l’acquisition de données à la mise en production. 

” Notre offre répond aux besoins des entreprises, justifie Yoel Tordjman,  CEO de Datascientest. Elle s’effectue surtout à distance, ce qui permet de la déployer sur différents sites à moindre coût, et de s’adapter aux disponibilités de chacun, avec néanmoins un coaching, d’abord collectif, puis par projet, dans le but d’atteindre un taux de complétion de 100 %.  “

S’exercer concrètement avec un projet fil-rouge

Tout au long de votre formation et au fur et à mesure que vos compétences se développent, vous allez mener un projet de Data Science nécessitant un investissement d’environ 80 heures parallèlement à votre formation. Ce sera votre projet ! En effet, ce sera à vous de déterminer le sujet et de le présenter à nos équipes. Cela vous permettra de passer efficacement de la théorie à la pratique et de s’assurer que vous appliquez les thèmes abordés en cours. C’est aussi un projet fortement apprécié des entreprises, car il confirme vos compétences et connaissances acquises à l’issue de votre formation en Data Science. Vous ne serez jamais seul parce que nos professeurs seront toujours à vos côtés et disponibles en cas de besoin ; nous vous attribuons un tuteur pour votre projet parmi nos experts en data science.  

Datascientest – Une solution de formation clé-en-main pour faciliter votre apprentissage et votre quotidien au travail 

Passionné(e) par le Big Data et l’intelligence artificielle ?  : 

 

Devenez expert(e) en Data Science et intégrez le secteur le plus recherché par les entreprises. Une fois diplômé, vous pourrez commencer votre carrière en répondant parfaitement aux besoins des entreprises qui font face à une profusion et multiplication de données.

Vous souhaitez échanger avec Datascientest France autour de votre projet ? 

Leader français de la formation en Data Science. Datascientest offre un apprentissage d’excellence orienté emploi pour professionnels et particuliers, avec un taux de satisfaction de 94 %.

Pour plus d’informations, n’hésitez pas à contacter DataScientest : 

contact@datascientest.com

+33 9 80 80 79 49 

Dossier

Métiers de la Data : Tour d’horizon des métiers phares

Vous souhaitez devenir un professionnel de la Data mais vous ne savez pas quel métier répondra au mieux à vos attentes dans le domaine ? Dans cet article, nous allons essayer de répondre à toutes vos questions en vous présentant en détail chacun des métiers de la Data.

Le Data Scientist

Le Data Scientist est un scientifique. Il a pour but de trouver des solutions grâce à l’analyse de données. Ainsi, le Data Scientist doit trouver ou créer l’algorithme le plus intéressant pour répondre aux différents besoins de son entreprise.

Le métier de Data Scientist peut souvent faire penser qu’une connaissance très développée en mathématiques statistiques est obligatoire. Néanmoins, ce métier demande surtout d’être capable de comprendre des données et de savoir différencier un algorithme efficace et utilisable, d’un algorithme qui ne fonctionne pas correctement. Ainsi, le Data Scientist devra comparer les modèles d’analyse de données et partager ensuite son impression avec le reste de l’équipe.

Concernant les salaires, en France et selon une enquête de DataScientest sur les salaires des metiers de la data menée auprès des entreprises du CAC 40, Data Scientist peut gagner entre 35 000 et 55 000 euros par an en début de carrière. En devant senior, il peut un salaire compris entre 45 000 et 60 000 euros par an.

Le Data Engineer

Le Data Engineer est comme son nom l’indique un ingénieur : il fabrique.
Ainsi, le Data Engineer se doit de réunir des données brutes et venant de nombreuses sources différentes dans une Data Warehouse centralisée : il doit donc créer et organiser les bases de données en mettant en place un pipeline pour rendre l’obtention de données et leur stockage automatique. Ensuite, le Data Engineer trie les données et les rend analysable pour les Data Scientists.

Concernant les salaires, toujours selon la même enquête de DataScientest, un Data Engineer gagne annuellement entre 35 000 et 60 000 euros et son salaire peut nettement augmenter avec les années d’expériences.

Le Data Analyst

Le Data Analyst a pour mission principale d’analyser les données. Le Data Analyst possède de grandes compétences en « Data Visualization ». Il étudie notamment des bases de données nettoyée pour y trouver des connaissances qui aideront l’entreprise à prendre des décisions.  Néanmoins, à la différence du Data Scientist, le Data Analyst ne formule pas lui-même les problèmes auxquels il va trouver des solutions : il se suffit à résoudre des problèmes soulignés par son entreprise notamment grâce à SQL

Concernant le salaire, le Data Scientist a plus de compétences que le Data Analyst. Il n’est donc pas étonnant que son salaire soit supérieur. En France, toujours selon l’enquête de DataScientest, il varie annuellement entre 35 000 et 60 000 euros selon son expérience.

Le Data Manager

Le Data Manager recueille et classe les informations de l’entreprise. Ses missions principales sont de recueillir toutes les données, les organiser, les rendre compréhensible, ajouter les données manquantes, supprimer les erreurs, et enfin, sécuriser les données.

Le Data Manager peut exercer en tant que salarié de l’entreprise où il exerce ou consultant d’une entreprise extérieure à son entreprise. Concernant les salaires, un Data Manager touche mensuellement entre 2 200 et 2 600 euros bruts par mois et augmente par la suite en fonction de ses responsabilités et du domaine d’activité de son entreprise.

Le Business Analyst

Le Business Analyst a un rôle très opérationnel et étudie les stratégies de l’entreprise au niveau marketing et financier. Contrairement au Data Analyst, il effectue l’analyse de l’activité de manière interne à l’entreprise.

Le Business Intelligence Manager

Le Business intelligence manager doit fouiller dans les données de l’entreprise, les trier et les analyser pour produire des guides d’aide à la prise de décision dans lequel il expose un constat, y expose ses recommandations de solutions de marketing et de data science.

Le Chief Data Officer

Le Chief Data Officer dirige la collecte des données et leur optimisation. Il décide la manière avec laquelle l’entreprise va utiliser les données qu’elle possède. Le Chief Data Officer peut être comparé à un véritable manager qui aurait certaines connaissances en Data.  

Le Data Protection Officer

Le Data Protection Officer est en charge de la protection des données : il fait le lien entre la loi et la technologie. Ainsi, il donne la possibilité à son entreprise d’exploiter les données qui sont à sa disposition sans enfreindre la vie privée des utilisateurs.

Le Data Architect

Le Data Architect est, comme son nom l’indique, un architecte. Il gère la façon dont les données vont être enregistrées. Il maîtrise donc les outils du Big Data et les solutions Cloud comme l’iCloud d’Apple.

Le Data Miner

Le Data Miner extrait, trie et rend lisible les données brutes. Il intervient souvent dans les structures qui ont des sources de données extrêmement variées et qui demandent un grand nettoyage.

Le Master Data Manager

Ce métier est réservé aux personnes très qualifiées. Le Master Data Management est un terme qui désigne la gestion des données critiques. Toutes ces données sont au sein d’un seul fichier, le Master File, et permet de faciliter le partage de données entre les départements de l’entreprise.

L’Ingénieur Big Data

L’ingénieur Big Data a des tâches très variées mais se charge notamment de la valorisation des données. Il analyse en effet des grands volumes de données à l’aide de différents logiciels pour les rendre exploitable pour ensuite les classer et les mettre en avant dans des rapports détaillés. L’ingénieur Big Data est aussi en charge de la création et de la mise en place des clusters. Il doit aussi se charger de la mise en place des algorithmes et de son contrôle qualité, pour ensuite assurer la cohérence du résultat.

Formations

TOP 10 des Meilleurs Masters en Data Science

Vous envisagez d’obtenir un master en data sciences ? Le blog de DataScientest t’a élaboré une petite liste des 10 meilleurs diplômes, notés par les Chief data Officiers et managers de 30 entreprises du CAC 40. C’est parti :

Si tu veux devenir Data Scientist :

  1. ENSAE Paris Tech, MS Data Science (4,75/5)

Tarif : entre 9 500€ et 14 000€

Durée : 420 heures de cours + stage de 4 à 6 mois

Description : C’est un master d’excellence qui apporte tout le bagage nécessaire pour devenir data scientist, data analyst ou encore chief data officer. Les cours sont conçus de telle manière à ce que les étudiants puissent mettre en pratique ce qui leur a été enseigné. Master alliant les connaissances à la fois techniques et théoriques, il te permettra de mener une carrière d’expert ou te hissera à la plus haute place des postes décisionnels de la data.

  1. Polytechnique, Master Data Science (4,73/5)

Durée : 1 an

Description : Ce master est proposé en partenariat avec l’Université Paris-Saclay, l’ENS et Télécom Paristech. Il propose un parcours pédagogique d’excellence alliant théorie et pratique. Il offre également aux étudiants qui le souhaitent, la possibilité d’obtenir un doctorat et de continuer dans la recherche.

  1. ENS Mathématiques vision Apprentissage (4,70/5)

Durée : 6 mois de cours + 4 mois de stage minimum

Description : Ce master est en association avec les écoles et universités les plus prestigieuses : Centrale Supélec, Polytechnique, Télécom Paristech et Jussieu. Il dote les étudiants de connaissances techniques solides qui leur permettront d’obtenir les meilleurs postes aussi bien en startups que dans les plus grandes entreprises du CAC 40, et ce, quelque soit le secteur d’activité.

  1. Université Paris Dauphine-MASH- Mathématiques, Apprentissage et Sciences Humaines (4,61/5)

Durée : 6 mois de cours + 4 mois de stage

Description : Ce master est reconnu par le CEREMADE (Centre de Recherche en Mathématiques de la Décision). Il offre un bagage en statistiques appliquées à l’économie numérique et aux sciences humaines.

Si tu veux devenir Data Analyst :

  1. Formation X-HEC data science for business (4,66/5)

Tarif : 41 300€

Durée : 2 ans

Description : C’est un master de prestige qui allie la renommée de la plus grande école de commerce de France à celle de la plus grande école d’ingénierie française. Le programme est conçu de telle sorte à ce que les étudiants puissent mettre en application toutes les connaissances techniques apprises lors de la première année à Polytechnique et ainsi répondre à des problématiques commerciales dans le cadre des cours à HEC.

  1. ESSEC-Centrale Supélec master of science, data science & business analytics (4,57/5)

Tarif : 23 000€

Durée : entre 1 et 2 ans

Description : À l’instar du master précédent, il allie le prestige de deux des plus grandes écoles de commerce et d’ingénierie de France. La particularité de ce master est le grand choix proposé aux étudiants quant à l’élection de leurs cours avancés. Ce diplôme est classé 3ème mondial et 1er européen par le classement mondial des universités QS.

  1. Telecom Paristech, master spécialisé big data (4,14/5)

Tarif : 18 500€

Durée : 9 mois de cours + 3 mois de stage

Description : La renommée internationale de ce master permet aux étudiants de décrocher les meilleurs postes dans les plus grandes entreprises. Ce master de qualité promeut l’innovation avec son incubateur Télécom Paris Novation Center Entrepreneurs et tous ses chercheurs.

Si tu veux devenir Data Engineer

  1. Telecom Paristech, master spécialisé big data (4,56/5)

Tarif : 18 500€

Durée : 9 mois de cours + 3 mois de stage

Description : voir description plus haut (si tu veux devenir data analyst 3)

  1. Université Paris Saclay- Finalité M2 Statistiques et Machine Learning (4,2/5)

Durée : 1 an de cours + 4 mois de stage

Description : Attention ! Cette formation est ultra sélective puisqu’elle n’offre que 20 places. C’est un master orienté plutôt Machine Learning qui aide les étudiants à préparer leur thèse en leur apprenant tous les outils nécessaires à l’analyse et à la prise de décision.

  1. Université Paris-Dauphine- Master Intelligence Artificielle, Systèmes, Données (IASD) (4,14/5)

Durée : 1 an de cours + 6 mois de stage

Description : C’est un master à haut niveau d’exigence qui apporte aux étudiants les connaissances théoriques les plus pointilleuses afin de devenir les prochains créateurs des meilleurs systèmes d’IA. Les cours sont dispensés par des grands chercheurs et des professionnels reconnus. Les étudiants auront également le choix entre un large panel d’options qui leur permettra de se spécialiser.

convolutional-neural-network
Définitions

Qu’est-ce qu’un convolutional neural network ?

Le convolutional neural network est une forme spéciale du réseau neuronal artificiel. Il comporte plusieurs couches de convolution et est très bien adapté à l’apprentissage automatique et aux applications avec Intelligence artificielle (IA) dans le domaine de la reconnaissance d’images et de la parole, de la vente et du marketing ciblé et bien plus encore.

Introduction au convolutional neural network

L’appellation convolutional neural network signifie « réseau neuronal convolutif » en Français. L’abréviation est CNN. Il s’agit d’une structure particulière d’un réseau de neurones artificiels spécialement conçu pour l’apprentissage automatique et le traitement d’images ou de données audio.

Dans une certaine mesure, son fonctionnement est calqué sur les processus biologiques derrières les réflexions du cerveau humain. La structure est similaire à celle du cortex visuel d’un cerveau. Le convolutional neural network se compose de plusieurs couches. La formation d’un réseau de neurones convolutifs se déroule généralement de manière supervisée. L’un des fondateurs du réseau de neurones convolutifs est Yann Le Cun.

Mise en place d’un convolutional neural network

Des neurones selon une structure entièrement ou partiellement maillés à plusieurs niveaux composent les réseaux de neurones conventionnels. Ces structures atteignent leurs limites lors du traitement d’images, car il faudrait disposer d’un nombre d’entrées correspondant au nombre de pixels. Le nombre de couches et les connexions entre elles seraient énormes et ne seraient gérables que par des ordinateurs très puissants. Différentes couches composent un réseau neuronal convolutif. Son principe de base est un réseau neuronal à propagation avant ou feedforward neural network partiellement maillé.

couches-cnn

Les couches individuelles de CNN sont :

  • Convolutional layers ou couches de convolution (CONV)
  • Pooling layers ou couches de Pooling (POOL)
  • ReLU layers ou couches d’activation ReLU (Rectified Linear Units)
  • Fully Connected layers ou couches Fully Connected (FC)

La couche de Pooling suit la couche de convolution et cette combinaison peut être présente plusieurs fois l’une derrière l’autre. La couche de Pooling et la couche de convolution étant des sous-réseaux maillés localement, le nombre de connexions dans ces couches reste limité et dans un cadre gérable, même avec de grandes quantités d’entrées. Une couche Fully Connected forme la fin de la structure.

Les tâches individuelles de chacune des couches

La couche de convolution est le plan de pliage réel. Elle est capable de reconnaître et d’extraire des caractéristiques individuelles dans les données d’entrée. Dans le traitement d’image, il peut s’agir de caractéristiques telles que des lignes, des bords ou certaines formes. Les données d’entrée sont traitées sous la forme d’une matrice. Pour ce faire, on utilise des matrices d’une taille définie (largeur x hauteur x canaux).

La couche de Pooling se condense et réduit la résolution des entités reconnues. À cette fin, elle utilise des méthodes telles que la mise en commun maximale ou la mise en commun de la valeur moyenne. La mise en commun élimine les informations inutiles et réduit la quantité de données. Cela ne réduit pas les performances du Machine Learning. Au contraire, la vitesse de calcul augmente en raison du volume de données réduit.

La couche d’activation ReLU permet un entraînement plus rapide et plus efficace en définissant les valeurs négatives sur zéro et en conservant les valeurs positives. Seules les fonctionnalités activées passent à la couche suivante.

La couche Fully Connected forme la fin d’un convolutional neural network CNN. Elle rejoint les séquences répétées des couches de convolution et de Pooling. Toutes les caractéristiques et tous les éléments des couches en amont sont liés à chaque caractéristique de sortie. Les neurones entièrement connectés peuvent être disposés dans plusieurs plans. Le nombre de neurones dépend des classes ou des objets que le réseau de neurones doit distinguer.

La méthode de travail à l’exemple de la reconnaissance d’image

Un CNN peut avoir des dizaines ou des centaines de couches qui apprennent à détecter différentes caractéristiques d’une image. Les filtres sont appliqués à chaque image d’apprentissage à différentes résolutions. La sortie de chaque image alambiquée est utilisée comme entrée pour la couche suivante. Les filtres peuvent aller de caractéristiques très simples telles que la luminosité et les contours à des caractéristiques plus complexes comme des spécificités qui définissent l’objet de manière unique.

Fonctionnalités d’apprentissage

Comme d’autres réseaux de neurones, une couche d’entrée, d’une couche de sortie et de nombreuses couches intermédiaires cachées composent un CNN. Ces couches effectuent des opérations qui modifient les données afin d’apprendre les caractéristiques spécifiques de ces données. Ces opérations se répètent en dizaines ou centaines de couches. Ainsi, chaque couche apprenne à identifier des caractéristiques différentes.

apprentissage-convolutional-neural-network

Poids partagé et valeurs de biais

Comme un réseau de neurones traditionnel, un CNN se compose de neurones avec des poids et des biais. Le modèle apprend ces valeurs au cours du processus de formation et les met continuellement à jour à chaque nouvel exemple de formation. Cependant, dans le cas des CNN, les valeurs des poids et des biais sont les mêmes pour tous les neurones cachés dans une couche spécifique.

Cela signifie que tous les neurones cachés détectent la même caractéristique telle qu’une bordure ou un point dans différentes régions de l’image. Cela permet au réseau de tolérer la traduction d’objets dans une image. Par exemple, un réseau formé à la reconnaissance des voitures pourra le faire partout où la voiture se trouve sur l’image.

Couches de classification

Après avoir appris les fonctionnalités multicouches, l’architecture d’un CNN passe à la classification. L’avant-dernière couche est entièrement connectée et produit un vecteur K-dimensionnel. Ici, K est le nombre de classes que le réseau pourra prédire. Ce vecteur contient les probabilités pour chaque classe de toute image classée. La couche finale de l’architecture CNN utilise une couche de classification pour fournir la sortie de classification.

Avantages d’un CNN dans le domaine de la reconnaissance d’images

Comparé aux réseaux neuronaux conventionnels, le CNN offre de nombreux avantages :

  • Il convient aux applications d’apprentissage automatique et d’Intelligence artificielle avec de grandes quantités de données d’entrée telles que la reconnaissance d’images.
  • Le réseau fonctionne de manière robuste et est insensible à la distorsion ou à d’autres changements optiques.
  • Il peut traiter des images enregistrées dans différentes conditions d’éclairage et dans différentes perspectives. Les caractéristiques typiques d’une image sont ainsi facilement identifiées.
  • Il nécessite beaucoup moins d’espace de stockage que les réseaux de neurones entièrement maillés. Le CNN est divisé en plusieurs couches locales partiellement maillées. Les couches de convolution réduisent considérablement les besoins de stockage.
  • Le temps de formation d’un CNN est également considérablement réduit. Grâce à l’utilisation de processeurs graphiques modernes, les CNN peuvent être formés de manière très efficace.
  • Il est la technologie de pointe pour le Deep Learning et la classification dans la reconnaissance d’images (image recognition).

Application d’un CNN dans le domaine du marketing

Le CNN est présent dans divers domaines depuis ces dernières années. La biologie l’utilise principalement pour en savoir plus sur le cerveau. En médecine, il fonctionne parfaitement pour la prédiction de tumeurs ou d’anomalies ainsi que pour l’élaboration de diagnostics complexes et de traitements à suivre en fonction des symptômes. Un autre domaine dans lequel il est couramment utilisé est celui de l’environnement. Il permet d’analyser les tendances et les modèles ou les prévisions météorologiques. Dans le domaine de la finance, il est couramment utilisé dans tout ce qui concerne la prévision de l’évolution des prix, l’évaluation ou l’identification du risque de contrefaçon.

Un CNN a de ce fait une application directe dans de nombreux domaines. Et pour faire face à l’accroissement de la quantité de données disponibles, il est également utilisé dans le marketing. En effet, dans le domaine des affaires et plus particulièrement en marketing, il a plusieurs usages :

  • Prédiction des ventes
  • Identification des modèles de comportement
  • Reconnaissance des caractères écrits
  • Prédiction du comportement des consommateurs
  • Personnalisation des stratégies marketing
  • Création et compréhension des segments d’acheteurs plus sophistiqués
  • Automatisation des activités marketing
  • Création de contenu

 crm-convolutional-neural-network

De toutes ses utilisations, la plus grande se trouve dans l’analyse prédictive. Le CNN aide les spécialistes du marketing à faire des prédictions sur le résultat d’une campagne, en reconnaissant les tendances des campagnes précédentes.

Actuellement, avec l’apparition du Big Data, cette technologie est vraiment utile pour le marketing. Les entreprises ont accès à beaucoup données. Grâce au travail de leur équipe experte dans la data science (data scientist, data analyst, data engineer), le développement de modèles prédictifs est beaucoup plus simple et précis. Les spécialistes du marketing pourront ainsi mieux ciblés les prospects alignés sur leurs objectifs.