Search results for

Python

BeautifulSoup
Définitions

Beautiful Soup : tout savoir sur la bibliothèque Python de Data Scraping

Le web est une véritable mine de données informatiques. Ces données peuvent être exploitées, analysées pour une infinité de cas d’usage et d’applications. On peut les utiliser pour nourrir des systèmes de Machine Learning, d’intelligence artificielle, ou tout simplement pour mettre en lumière des tendances et des phénomènes.

S’il est possible de collecter ces données manuellement afin de constituer de vastes datasets, cette tâche représente un travail de titan. Afin de l’automatiser, on utilise le Web Scraping.

Qu’est-ce que le Web Scraping ?

Le Web Scraping est un processus qui consiste à assembler des informations en provenance d’internet, à l’aide de divers outils et frameworks. Cette définition est très large, et même le fait de copier / coller les paroles d’une chanson peut être considéré comme une forme de Web Scraping.

Toutefois, le terme de Web Scraping désigne généralement un processus impliquant l’automatisation. Les volumes massifs de données sont collectés automatiquement, afin de constituer de vastes datasets.

Certains sites web s’opposent à la collecte de leurs données par des scrapers automatiques. En règle générale, le scraping à des fins éducatives est plus toléré que pour un usage commercial. Il est important de consulter les conditions d’utilisation d’un site avant d’initier un projet.

À quoi sert le Web Scraping ?

Le Web Scraping permet d’agréger des informations plus rapidement qu’avec une collecte manuelle. Il n’est plus nécessaire de passer de longues heures à cliquer, à dérouler l’écran ou à rechercher les données.

Cette méthode se révèle particulièrement utile pour amasser de très larges volumes de données en provenance de sites web régulièrement mis à jour avec du nouveau contenu. Le scraping manuel est une tâche chronophage et rébarbative.

À l’échelle individuelle, le Web Scraping peut se révéler utile pour automatiser certaines tâches. Par exemple, un demandeur d’emploi peut utiliser Python pour automatiser ses recherches d’offres. Quelques lignes de code permettent d’enregistrer automatiquement les nouvelles annonces publiées sur des plateformes comme Indeed ou Monster, afin de ne plus avoir à visiter ces sites web quotidiennement.

web-scraping-beautiful-soup

Le Web Scraping peut aussi être utilisé pour surveiller des changements de prix, comparer des prix, ou surveiller la concurrence en collectant des sites web en provenance de leurs sites web. Les possibilités sont nombreuses et diverses.

Toutefois, cette méthode se révèle surtout pertinente pour les projets Big Data nécessitant d’immenses volumes de données. Par exemple, l’entreprise ClearView AI a utilisé le Web Scraping sur les réseaux sociaux afin de constituer une immense base de données de photos de profils pour son logiciel de reconnaissance faciale.

Le Web Scraping est presque aussi vieux qu’internet. Alors que le World Wide Web fut lancé en 1989, le World Wide Web Wanderer a été créé quatre ans plus tard. Il s’agit du premier robot web créé par Matthew Gray du MIT. Son objectif était de mesurer la taille du WWW.

Les défis du Web Scraping

Depuis sa création, internet a beaucoup évolué. On y trouve une large variété de types et formats de données, et le web scraping comporte donc plusieurs difficultés.

Le premier défi à relever est celui de la variété. Chaque site web est différent et unique, et nécessite donc un traitement spécifique pour l’extraction d’informations pertinentes.

En outre, les sites web évoluent constamment. Un script de Web Scraping peut donc fonctionner parfaitement la première fois, mais se heurter ensuite à des dysfonctionnements en cas de mise à jour.

Dès que la structure d’un site change, le scraper peut ne plus être capable de naviguer la ” sitemap ” correctement ou de trouver des informations pertinentes. Heureusement, la plupart des changements apportés aux sites web sont minimes et incrémentaux, et un scraper peut donc être mis à jour avec de simples ajustements.

Néanmoins, face à la nature dynamique d’internet, les scrapers nécessitent généralement une maintenance constante. Il est possible d’utiliser l’intégration continue pour lancer périodiquement des tests de scraping et s’assurer que les scripts fonctionnent correctement.

Les APIs en guise d’alternative au Web Scraping

Certains sites web proposent des APIs (interface de programmation d’application) permettant d’accéder à leurs données de manière prédéfinie. Ces interfaces permettent d’accéder aux données directement en utilisant des formats comme JSON et XML, plutôt que de s’en remettre au parsing de HTML.

L’utilisation d’une API est en général un processus plus stable que l’agrégation de données via le Web Scraping. Pour cause, les développeurs créent des APIs conçues pour être consommées par des programmes plutôt que par des yeux humains.

API-beautiful-soup

La présentation front-end d’une site web peut souvent changer, mais un tel changement dans le design d’un site web n’affecte pas la structure de son API. Cette structure est généralement plutôt permanente, ce qui en fait une source plus fiable de données.

Néanmoins, les APIs aussi peuvent changer. Les défis liés à la variété et à la durabilité s’appliquent donc aussi bien aux APIs qu’aux sites web. Il est également plus difficile d’inspecter la structure d’une API par soi-même si la documentation fournie n’est pas suffisamment complète.

Qu’est-ce que Beautiful Soup ?

Beautiful Soup est une bibliothèque Python utilisée pour le Web Scraping. Elle permet d’extraire des données en provenance de fichiers XML ou HTML. Cette bibliothèque crée un arbre de parsing à partir du code source de la page, pouvant être utilisé pour extraire les données de manière hiérarchique et lisible.

À l’origine, Beautiful Soup fut introduite en mai 2006 par Leonard Richardson qui continue à contribuer au projet. En outre, le projet est soutenu par Tidelift et son outil de maintenance open-source proposé par abonnement payant.

En plus de ses hautes performances, Beautiful Soup apporte plusieurs avantages. Cet outil permet de parcourir les pages de la même manière qu’un navigateur, et enjolive le code source.

Comment apprendre à utiliser Beautiful Soup et Python ?

Afin d’apprendre à utiliser Beautiful Soup, vous pouvez choisir DataScientest. Leur formation Data Analyst commence avec un module dédié à la programmation en Python, et comporte un module dédié à l’extraction de données textes et au Web Scraping.

Les autres modules de ce cursus couvrent la Dataviz, le Machine Learning, les bases de données Big Data et la Business Intelligence. À l’issue du programme, vous aurez toutes les compétences requises pour exercer le métier de Data Analyst.

Toutes nos formations adoptent une approche Blended Learning combinant coaching individuel sur notre plateforme en ligne et Masterclass. Le programme peut être complété en Formation Continue ou en mode BootCamp intensif.

À la fin du cursus, vous recevrez un certificat délivré par l’Université Paris la Sorbonne dans le cadre de notre partenariat. Parmi les alumnis, 80% ont trouvé un emploi immédiatement après la formation.

Nos programmes sont éligibles au Compte Personnel de Formation pour le financement. N’attendez plus et découvrez la formation Data Analyst de DataScientest !

Vous savez tout sur Beautiful Soup. Découvrez notre dossier complet sur le langage Python, et notre dossier sur le métier de Data Analyst.

pandas-bibliothèque-python
Définitions

Pandas : une bibliothèque Python pour manipuler facilement des données

La bibliothèque Pandas est certainement la plus utile pour les data scientist sous le langage Python. Elle permet d’explorer, transformer, visualiser et comprendre vos données afin d’en retirer le maximum d’informations. Voyons ensemble dans quelles cas l’utiliser et ses fonctions les plus courantes.

Si vous évoluez dans la data science, vous avez sûrement entendu parler de la bibliothèque Pandas. Son nom n’a rien à voir avec ce petit animal d’Asie qui ressemble à un ours. Le nom «Pandas» est une contraction des mots «Panel Data» et «Python Data Analysis». Pandas est donc une bibliothèque open-source proposant différentes fonctions qui permettent la manipulation et l’analyse de données en Python de manière simple et intuitive. C’est donc une bibliothèque polyvalente qui vous permettra de réaliser facilement des analyses de données complexes. La bibliothèque Pandas permet également de créer facilement des graphes, très utiles dans la Data Analyse.

Première force de Pandas, elle se base sur la bibliothèque Numpy

Grand avantage de Pandas, elle se base sur la très populaire bibliothèque Numpy. Cette bibliothèque fournit une pléiade de structures de données et d’opérations qui permettent de traiter des données numériques et des données chronologiques. La bibliothèque Pandas est également importante car ses données sont souvent utilisées comme base pour les fonctions de plotting de Matplotlib, une autre bibliothèque renommée utilisant le langage Python. Les données issues de Pandas sont aussi très utiles dans l’analyse statistique en SciPy, les algorithmes de Machine Learning en Scikit-learn. La bibliothèque Pandas est également très utilisée dans le traitement et l’analyse des données tabulaires (vous pourrez stocker vos données sous le format .csv, .tsv et .xlsx) en entrant des requêtes de type SQL.

Les Séries, les Dataframes et le Panel : les principales structures de données de Python Panda

Si vous utilisez Pandas, vous travaillerez principalement avec deux structures de données, les Séries et les Dataframes.

Les Séries : Une Série est un tableau unidimensionnel étiqueté qui peut contenir des données de n’importe quel type (entier, chaîne, flottant, objets python, etc.). En d’autres mots, les séries sont équivalentes aux colonnes dans un tableau Excel. Les étiquettes des axes sont collectivement appelées index.

Pandas en général est utilisé pour les données de séries chronologiques financières ou des données économiques. Ce langage dispose de nombreux assistants intégrés pour gérer les données financières. Grâce à Numpy, vous pourrez facilement gérer de grands tableaux multidimensionnels pour le calcul scientifique.

tableau-multidimensionnel

La Dataframe : c’est une structure de données bidimensionnelle, c’est-à-dire que les données sont alignées de façon tabulaire en lignes et en colonnes. On peut la comparer en quelque sorte à un classeur Excel. La Dataframe Pandas est particulièrement puissante car elle permet de :

  • charger des données provenant de différentes sources.
  • réaliser facilement des statistiques et calculer la moyenne, la médiane, le maximum et le minimum de chaque colonne et les corrélations entre chacune d’entre elles.
  • nettoyer facilement les données en supprimant les valeurs manquantes ou en filtrant les lignes ou les colonnes selon certains critères.
  • visualiser les données avec l’aide de Matplotlib. Tracez des barres, des lignes, des histogrammes, des bulles, etc.
  • elle permet de stocker les données nettoyées et transformées dans un CSV, TSV ou XLSX.

La Dataframe vous permet également de créer vos propres fonctions Python pour effectuer certaines tâches de calcul et les appliquer aux données de vos Dataframes.

En utilisant les Séries et les Dataframes on peut donc facilement manipuler des données et les représenter.

Enfin, le Panel est un conteneur important pour les données en 3 dimensions. Les noms des 3 axes sont destinés à décrire les opérations impliquant des données de panel et, en particulier, l’analyse économétrique de ces données. L’analyse économétrique est une analyse quantitative, permettant de vérifier l’existence de certaines relations entre des phénomènes économiques et de mesurer concrètement ces relations sur la base d’observations de faits réels. On peut par exemple observer les notes des élèves d’une classe et les comparer sur les devoirs rendus durant les trois trimestres d’une année scolaire.

Pandas, un langage essentiel en Data Science et en Machine Learning

Pandas est un outil particulièrement populaire en science des données il est particulièrement reconnu pour le traitement et l’analyse des données. En effet, Pandas est très utile dans le nettoyage, la transformation, la manipulation et l’analyse de données. En d’autres mots, Pandas aide les Data Scientists à mettre de l’ordre dans leurs données ce qui représente selon certains près de 80% de leur travail.

En ce qui concerne le Machine Learning, Pandas est tout aussi reconnu comme un outil de choix. Ces fonctions permettent notamment d’explorer, de transformer mais aussi de créer une visualisation de la donnée.

En effet, Pandas est souvent accompagné de la bibliothèque Scikit-learn, c’est le package de machine learning de Python. L’utilisation de Scikit-learn intervient dans un deuxième temps après le passage de Pandas dans la première phase d’exploration de la donnée dans un projet de Data Science.

Se former à Pandas avec DataScientest

logo-flask
Comment apprendre?

Tutoriel API Flask : Comment programmer une API avec Python ?

Bonjour à tous et bienvenue dans ce Tutoriel sur Flask. Dans la suite de cet article, vous allez apprendre à mettre en place une API sous Python à l’aide de cet outil de plus en plus utilisé.

Qu’est-ce qu’une API ? Quand est-ce utile ?

Nous allons commencer ce tutoriel sur Flask en parlant des APIs. Les API (application programming interface / interface de programmation d’application) sont des interfaces. Elles vous permettent de déclencher des fonctionnalités d’un projet. Vous pouvez vous imaginer un panneau de commandes. Et Flask est un outil qui permet de construire des API avec python.

Si vous disposez de code qui vous sert à réaliser des tâches, peu importe lesquelles, vous pourriez vouloir le rendre disponible, permettre à des utilisateurs d’envoyer des requêtes à votre service. Et c’est dans ce contexte que mettre en place une API vous intéressera.

Exemple :

Pour donner l’exemple d’une situation dans laquelle vous auriez besoin d’une API : imaginez que vous veniez de développer une fonctionnalité permettant, à partir d’une image, d’obtenir une valeur numérique.

On a la fonction “fonction1” qui prend en paramètre un objet de type bytes (une image) qui sera traité et qui fournira en sortie une variable de type string.

Dire que vous aimeriez mettre en place une interface pour qu’un utilisateur distant puisse lui envoyer une requête, que cet utilisateur puisse dire à votre programme “s’il te plait, exécute le code sur l’image que je te fournit et renvoie moi le résultat” c’est comme dire que vous aimeriez mettre en place une API.

Les types de requêtes

En travaillant sur la mise en place d’API, on a remarqué que les requêtes qu’on voulait implémenter se catégorisent très souvent parmi ces quatre :

  •     Créer un élément
  •     Modifier un élément
  •     Supprimer un élément
  •     Récupérer une liste d’éléments

Nous allons donc voir dans ce tutoriel sur flask comment implémenter des requêtes de type : get (récupérer), post (envoyer), put (modifier), delete (supprimer).

Il existe d’autres types de requêtes, vous n’en aurez surement pas besoin mais vous pourrez les trouver ici.

Adresse et routes

Vous allez run votre service sur une machine, que ce soit la vôtre ou celle que vous louez dans un datacenter.

Elle aura une adresse IP. Notez que l’adresse 127.0.0.1 signifie “moi-même”. Si vous envoyez une requête à cette adresse, c’est vers votre PC que vous vous dirigez.

Votre ordinateur ou le serveur sur lequel vous voulez faire fonctionner le service sont des machines et elles ont des “ports” sur lesquels les services peuvent communiquer.

Votre API, ce sera un programme qui sera en écoute sur un port de la machine sur laquelle il est installé.

Si vous lancez votre API sur le port 1234 de votre machine, vous pourrez lui envoyer des requêtes en précisant l’url 127.0.0.1:1234

Une dernière chose : mettons que j’ai deux fonctionnalités : fonction1 et fonction2 qui sont toutes deux des requêtes de type get. Comment mon utilisateur pourra m’indiquer celle qu’il veut utiliser en ne fournissant que l’adresse 127.0.0.1:1234 ?

On pourrait imaginer que pour déclencher la fonction1, il puisse s’adresser à 127.0.0.1:1234/ici et que pour déclencher la fonction2, il puisse s’adresser à 127.0.0.1:1234/la. Eh bien c’est comme ça que cela fonctionne et on appelle /ici et /la des “routes”.

Notez que “/”, est la route par défaut. Si vous envoyez une requête à 127.0.0.1:1234, on considèrera que vous vous adressez à 127.0.0.1:1234/

Prise en main de flask et implémentation de routes

La base

Le module Flask de python permet d’implémenter des API : pip install Flask.

module-flaskunnamed-13unnamed-14

Voici le snippet dont ces images sont extraites. Il est accessible via ce github repository.

Dans le répertoire où se situe le main.py, vous pouvez lancer la commande “python main.py”.

On aura alors un programme python en écoute sur le port 5000 (voir main.py ligne 14).

Il accepte des requêtes de type get à la route exemple_route (voir main.py ligne 11 et ligne 5 ainsi que routes/exemple_route.py ligne 4).

Les paramètres

Pour que les choses deviennent plus intéressantes, on accepte des paramètres. Voici le même snippet avec quelques lignes supplémentaires (exemple_route_/exemple_route.py : lignes 4; 5; 6; 10 et 11).

unnamed-15

Tester son API

Pour tester vos routes, je vous propose dans ce tutoriel sur flask, d’utiliser postman ou la bibliothèque requests de Python :

Une API CRUD (Create Read Update Delete)

Vous pouvez consulter ce github repository qui permet de faire les quatre types de requêtes (get, post, put, delete) et qui présente deux routes : exemple_route et exemple_route_all.

Les requêtes acceptées sont :

  • exemple_route get : prend “user” en paramètre et renvoie son mot de passe s’il existe
  • exemple_route post : prend “user” et “password” en paramètres et ajoute une valeur à notre liste d’utilisateurs
  • exemple_route put : prend “user” et “password” en paramètres et modifie le mot de passe de l’utilisateur user s’il existe
  • exemple_route delete : prend “user” en paramètre et supprimer l’utilisateur s’il existe
  • exemple_route_all get : ne prend pas de paramètre et renvoie la liste des utilisateurs et leur mot de passe

En inspectant le code, on se rend compte qu’il existe une variable “données” (exemple_route/exemple_route.py  ligne 14). Elle sera récupérée dans les méthodes implémentées à la suite grâce à la ligne de commande “global données “.

Pour vous permettre de créer une API, je vous suggère :

  • de disposer des bibliothèques : Flask, flask_cors, flask_restful
  • de partir d’un clone du repository Small_flask_api
  • d’y ajouter des fichiers dans le dossier routes pour contenir vos classes et la définition de leurs paramètres en vous inspirant du repository Exemple_API_1
  • d’ajouter les imports de classes dans le main.py et de déclarer leur associations

Je vous fournis un programme disponible sur ce repository. La fonction approximation_lagrange du fichier utils.py prend une liste de points en paramètres et renvoie une liste de coefficients d’un polynôme d’interpolation. La fonction écrire_polynome du fichier operations.py prend cette valeur dernièrement retournée pour rendre la syntaxe de l’écriture du polynôme interprétable par un éditeur LaTeX.

Je vous propose d’implémenter une API qui permette d’opérer sur une liste de points : récupérer, ajouter, supprimer. Elle permet également de récupérer l’expression d’un polynôme passant par les points de contrôle.

Vous trouverez une solution ici.

La documentation Flask

Pour continuer d’apprendre et acquérir des compétences après ce tutoriel sur flask, il vous faudra expérimenter au travers de projets, personnels et/ou professionnels. Vous aurez surement besoin de consulter la documentation flask et les forums d’entraide en cas de besoin, notamment Stack Overflow.

Envoyer un fichier ou une image

Envoyer une image en réponse est fréquemment demandé, ainsi je vous explique comment faire.

Importer send_file de la bibliothèque flask et l’appeler au retour d’une route en spécifiant le chemin pour situer le fichier. Vous pouvez consulter ce repository illustrant le renvoie d’images.

Se former sur Flask

Datascientest propose la formation au métier de data engineer qui permet non seulement d’apprendre à construire des API avec Flask, mais aussi d’utiliser FastApi et de, par la suite, conteneuriser les services API. La conteneurisation est un procédé utilisé pour isoler ses services, simplifier leur scalabilité et leur déploiement cross-platform.

Découvrir la formation Data Engineer

formation-python
Dossier

Formation Python : pourquoi et comment ?

Pourquoi apprendre Python ?  C’est l’une des premières questions que les étudiants se posent dans de nombreux centres académiques et formations Python. La réponse coule d’elle-même pour de nombreuses raisons. Python est un langage de programmation très populaire. Il a été une pièce maîtresse dans de grands projets et surtout dans l’introduction de pratiques innovantes lors de la programmation.

L’une des forces de ce langage de programmation est la large communauté de développeurs qui l’entoure. Tous ces professionnels cherchent à contribuer, partager et créer des logiciels évolutifs en communauté. En ce sens, il y a une sorte d’ambiance Python. Cela attire les programmeurs, les chercheurs et les professionnels de tous horizons qui cherchent à améliorer leurs performances de travail.

Python est un langage de programmation totalement gratuit et interprétatif qui est assez polyvalent. Il permet de mettre en place des projets variés allant du développement d’un site Web aux applications pour les systèmes d’exploitation.

La simplicité de la ligne de commande lors de la programmation est remarquable. C’est un fait connu de tous ceux qui l’utilisent. Et si vous n’êtes pas encore convaincu de suivre une formation Python, nous allons vous donner ici 5 raisons d’apprendre ce langage de programmation orienté objet.

Pourquoi suivre une formation Python ?

Python est un langage de programmation qui a beaucoup de qualité. C’est pour cette raison qu’il est actuellement très utilisé dans plusieurs domaines.

Open source

Si vous avez déjà programmé dans un autre langage, vous avez probablement remarqué qu’il s’agit de langages propriétaires avec quelques défauts dans la partie support. Et c’est encore pire pour les entreprises détenant des droits et faisant face par la suite à des problèmes juridiques.

Python est complètement open source. Il est accessible au public et tout le monde peut le modifier à sa guise en ajoutant ou en mettant de côté une partie du code toujours dans le but d’améliorer le travail de programmation.

accessibilité-python

En effet, Python a une licence connue sous le nom de PSFL ou Python Software Foundation License. Elle est compatible avec la licence publique générale GNU. De cette manière, il permet l’utilisation du code dans tout type de projet sans violations possibles du travail du programmeur et de ses actifs.

Multi-paradigme et multiplateforme

Initialement, Python a été conçu pour Unix. Mais, aujourd’hui, il peut fonctionner avec n’importe quel autre système. Il n’y a aucun risque qu’il y ait des problèmes d’implémentation tant que les utilisateurs recevront le Compiler approprié qui peut être configuré à partir du site officiel de Python.

Lorsqu’un langage est multi-paradigme, il permet non seulement de créer du développement Web, mais aussi de créer des applications ou des programmes sous d’autres critères de code structurel. Ainsi, Python est pratique pour développer des sous-paradigmes de programmation avancés contrairement à d’autres formes de programmation conventionnelles que l’on trouve notamment avec les langages plus anciens.

Python rassemble le meilleur de tous les langages en un seul. Il permet de développer des jeux, des applications, des sites Web et tout ce dont un programmeur est capable de faire, quelle que soit la complexité du projet.

C’est ainsi que les grandes entreprises utilisent Python au quotidien, notamment celles qui doivent interpréter des volumes massifs de données grâce à la data science et le Machine Learning.

Python est également présenté comme multiplateforme. En effet, il peut fonctionner sur n’importe quel système d’exploitation et a même été adapté à d’autres gadgets avec beaucoup de succès.

Polyvalence lors de la programmation

Avec Python, tout est possible. On peut créer n’importe quoi, du site Web à un programme ou une application pour effectuer une tâche telle que le calcul de valeurs statistiques ou la résolution de mathématiques complexes.

Syntaxe parfaite simple

La syntaxe Python est conviviale et cet élément met certainement en évidence la programmation. Pour les novices en programmation, il sera très facile d’effectuer le processus d’écriture du code.

Lorsqu’on parle de syntaxe, nous nous référons aux règles de protocole qui font partie d’un processus. D’une certaine manière, il s’agit des règles de grammaire et de style qui rendent un message lisible et compréhensible. On peut dire que le code est l’âme, mais la syntaxe donne forme à cette âme et lui donne le plus nécessaire pour avoir une certaine valeur.

syntaxe-Python

En d’autres termes, la syntaxe de Python facilite fortement la formation à ce langage de programmation, d’où d’ailleurs cet engouement vers ce langage de programmation. Pour les personnes qui ne font que programmer, elle est très facile à comprendre par rapport à d’autres langages de programmation qui sont beaucoup plus compliqués.

Python rend la programmation beaucoup plus facile. Dans de nombreuses situations, lors d’un projet mené en équipe, c’est généralement la faiblesse des autres langages de programmation. Mais c’est tout le contraire avec Python, car le code est beaucoup plus compréhensible.

De quoi se compose une formation Python ?

Une formation Python avec un programme et une qualité pédagogique similaire peut durer 12 mois au maximum. Elle nécessite bien évidemment des supports de cours, que ce soit une formation à distance, initiale ou en continue. Les sessions de formation peuvent comprendre plusieurs modules avec des exercices pratiques ou travaux pratiques en programmation Python (conception de base de données, création des applications avec des interfaces graphiques, développement web…), des pré-requis pour maîtriser ce langage de programmation. Mais avant tout, il faut savoir l’utiliser selon les deux modes de programmation proposés par Python.

Programmation structurée

Python a plusieurs paradigmes de programmation et l’un d’eux est la programmation structurée. Ce paradigme est basé sur 3 sous-programmes :

  • La séquence qui se produit naturellement dans le langage. C’est l’ordre d’exécution dans lequel les instructions sont écrites.
  • La sélection qui est l’exécution de phrases selon une condition.
  • L’itération (cycle ou boucle) qui est l’exécution d’énoncés répétitifs ou non selon une condition vraie.

Programmation orientée objet

Le deuxième paradigme enseigné lors d’une formation Python est la programmation orientée objet, mais uniquement lorsque le premier paradigme est maitrisé. Ici, les étudiants apprennent à fusionner les deux paradigmes pour travailler avec des classes en Python. Ce paradigme est basé sur :

  • L’héritage simple et multiple qui consiste à faire hériter à une classe enfant les méthodes et les attributs d’une classe parent.
  • Le polymorphisme et l’encapsulation où le premier envoie les mêmes messages à différents objets et le second change l’état d’un objet uniquement à travers les opérations définies pour cet objet.
  • La modularité qui consiste à subdiviser une application en modules indépendants.
Dossier

Pourquoi Python est-il populaire auprès des data scientists ?

Le langage de programmation de Python Software Foundation est une programmation orientée objet. Lorsque les data scientists parient sur Python pour le traitement des données volumineuses, ils sont conscients qu’il existe d’autres options populaires telles que R, Java ou SAS. Toutefois, Python demeure la meilleure alternative pour ses avantages dans l’analyse du Big Data.

Pourquoi choisir Python ?

Entre R, Java ou Python pour le Big Data, choisir le dernier (en version majeure ou version mineure) est plus facile après avoir lu les 5 arguments suivants :

1.      Simplicité

Python est un langage de programmation interprété connu pour faire fonctionner les programmes avec le moins de chaînes de caractères et de lignes de code. Il identifie et associe automatiquement les types de données. En outre, il est généralement facile à utiliser, ce qui prend moins de temps lors du codage. Il n’y a pas non plus de limitation pour le traitement des données.

2.      Compatibilité

Hadoop est la plateforme Big Data open source la plus populaire. La prise en charge inhérente à Python, peu importe la version du langage, est une autre raison de la préférer.

3.      Facilité d’apprentissage

Comparé à d’autres langages, le langage de programmation de Guido Van Rossum est facile à apprendre même pour les programmeurs moins expérimentés. C’est le langage de programmation idéal pour trois raisons. Premièrement, elle dispose de vastes ressources d’apprentissage. Deuxièmement, elle garantit un code lisible. Et troisièmement, elle s’entoure d’une grande communauté. Tout cela se traduit par une courbe d’apprentissage progressive avec l’application directe de concepts dans des programmes du monde réel. La grande communauté Python assure que si un utilisateur rencontre des problèmes de développement, il y en aura d’autres qui pourront lui prêter main-forte pour les résoudre.

4.      Visualisation de données

Bien que R soit meilleur pour la visualisation des données, avec les packages récents, Python pour le Big Data a amélioré son offre sur ce domaine. Il existe désormais des API qui peuvent fournir de bons résultats.

5.      Bibliothèques riches

Python dispose d’un ensemble de bibliothèques riche. Grâce à cela, il est possible de faire des mises à jour pour un large éventail de besoins en matière de science des données et d’analyse. Certains de ces modules populaires apportent à ce langage une longueur d’avance : NumPy, Pandas, Scikit-learn, PyBrain, Cython, PyMySQL et iPython.

Que sont les bibliothèques en Python ?

La polyvalence de toutes les versions de Python pour développer plusieurs applications est ce qui a poussé son usage au-delà de celui des développeurs. En effet, il a attiré l’intérêt de groupes de recherche de différentes universités du monde entier. Il leur ont permis de développer des librairies pour toutes sortes de domaines : application web, biologie, physique, mathématiques et ingénierie. Ces bibliothèques sont constituées de modules qui ont un grand nombre de fonctions, d’outils et d’algorithmes. Ils permettent d’économiser beaucoup de temps de programmation et ont une structure facile à comprendre.

Le programme Python est considéré comme le langage de programmation pour le développement de logiciels, de pages Web, d’applications de bureau ou mobiles. Mais, il est également le meilleur pour le développement d’outils scientifiques. Par conséquent, les data scientists sont destinés à aller de pair avec Python pour développer tous leurs projets sur le Big Data.

Python et la data science

La data science est chargée d’analyser, de transformer les données et d’extraire des informations utiles pour la prise de décision. Et il n’y a pas besoin d’avoir des connaissances avancées en programmation pour utiliser Python afin d’effectuer ces tâches. La programmation et la visualisation des résultats sont plus simples. Il y a peu de lignes de code en Python et ses interfaces graphiques de programmation sont conviviales.

Dans le développement d’un projet de science des données, il existe différentes tâches pour terminer ledit projet, dont les plus pertinentes sont l’extraction de données, le traitement de l’information, le développement d’algorithmes (machine learning) et l’évaluation des résultats.

Définitions

R ou Python: Comment choisir ?

On me pose souvent la question: pourquoi avoir commencé à apprendre Python plutôt que R?

A la base, je n’ai pas de réponse, si ce n’est le hasard, puisque j’ai commencé à apprendre Python grâce à Codecademy. Et il semblerait que ce soit difficile d’apprendre les deux en parallèle…

Mais les deux s’opposent-ils vraiment? Choisir, c’est renoncer, alors à quoi devons-nous renoncer exactement?

Continue Reading

Table de travail d'un business analyst
Définitions

Analyse Commerciale : Découvrez le monde de la Business Analytics

Dans le paysage commercial actuel, l’analyse est devenue un pilier essentiel pour orienter les choix stratégiques et favoriser la croissance. L’émergence du Big Data et des innovations technologiques a donné lieu à une discipline indispensable : la Business Analytics. Ce champ d’expertise explore et valorise les données pour révéler des insights pertinents, des tendances occultes et des orientations stratégiques. Il permet ainsi aux entreprises de prendre des décisions avisées tout en acquérant un avantage compétitif.

Qu'est-ce que la Business Analytics ?

La Business Analytics, aussi connue sous le nom d’analyse commerciale, est une discipline essentielle en affaires. Elle concerne la collecte, le traitement et l’analyse de données dans le but de fournir des insights actionnables. Ce champ permet aux entreprises de s’appuyer sur des données concrètes pour orienter leur stratégie, plutôt que sur de simples hypothèses. Au lieu de se limiter à l’examen des tendances historiques, la Business Analytics exploite des méthodes avancées pour révéler des motifs, relations et opportunités souvent méconnus. Par l’emploi de techniques variées, comme les analyses statistiques et les modèles prédictifs, elle aide les organisations à mieux comprendre leur position actuelle, à prévoir les évolutions futures et à optimiser leurs opérations.

Elle couvre une gamme variée de secteurs, de la finance au marketing en passant par la gestion des ressources humaines et la logistique. Elle intègre non seulement les données internes, mais aussi des informations externes pour offrir une vue globale. Avec les progrès technologiques et la montée en puissance de l’intelligence artificielle, la Business Analytics a évolué de manière significative. Elle propose désormais des solutions sophistiquées en matière de visualisation de données, de prédiction de tendances et d’optimisation des processus. En résumé, elle est devenue un levier essentiel pour toute organisation cherchant à prendre des décisions fondées dans un environnement d’affaires en constante mutation.

Différence entre Business Analytics et Business Intelligence

Bien que les termes “Business Analytics” et “Business Intelligence” puissent parfois être considérés comme synonymes, ils se distinguent par leurs approches et leurs objectifs en matière de données d’affaires. La Business Intelligence (BI) met l’accent sur l’agrégation, l’organisation et la visualisation des données historiques de l’entreprise. Elle offre une perspective rétrospective, alimentant ainsi la prise de décisions basées sur des informations passées.

À l’inverse, la Business Analytics (BA) va plus loin en s’intéressant à l’anticipation des performances à venir. Elle utilise des méthodes sophistiquées comme l’analyse prédictive, la modélisation statistique et même l’apprentissage machine pour éclairer sur des tendances, des relations et des corrélations inexplorées. Son but ultime est d’orienter des décisions stratégiques et opérationnelles plus éclairées. En somme, tandis que la BI se consacre à une compréhension rétrospective des données, la BA se focalise sur des analyses avancées pour guider l’avenir.

L'Impact du Business Analytics sur la Prise de Décision

L’adoption de la Business Analytics dans le processus décisionnel a révolutionné la stratégie d’entreprise. Avec une analyse de données poussée, les dirigeants disposent d’éléments concrets pour orienter leurs choix. Ces outils d’exploration révèlent des tendances et des relations complexes, souvent sources d’aperçus inattendus. Ainsi, les entreprises peuvent non seulement anticiper des opportunités mais aussi des risques, tout en s’appuyant sur des données fiables pour leurs décisions.

L’influence de la Business Analytics s’étend également à l’efficacité opérationnelle. En ajustant les processus internes à partir des analyses de données, les organisations ont la possibilité de minimiser les coûts, maximiser la productivité et améliorer le service client. Par exemple, l’exploration de données peut mettre en lumière des zones d’inefficacité dans la chaîne d’approvisionnement, optimiser la gestion des stocks ou encore personnaliser l’expérience client. À l’ère du numérique, la Business Analytics constitue un levier stratégique pour les entreprises cherchant à se démarquer et à s’adapter dans un environnement dynamique.

Exemples Concrets d'Application

Dans divers secteurs d’activité, la Business Analytics trouve des applications concrètes. En commerce de détail, elle permet, via l’analyse prédictive, d’anticiper les goûts des consommateurs pour une gestion optimale des stocks et une réponse efficace à la demande. Elle intervient également dans la tarification dynamique pour s’ajuster en temps réel selon la demande et les concurrents.

En santé, la Business Analytics facilite la prise de décisions médicales en prédisant les admissions futures et en allouant judicieusement les ressources. Elle aide aussi à cerner les facteurs de risque pour les patients et accélère la découverte de nouveaux médicaments.

Dans le secteur des médias et du divertissement, elle joue également un rôle significatif. Les services de streaming utilisent ces analyses pour personnaliser les recommandations, augmentant ainsi l’engagement utilisateur. Les studios de cinéma, de leur côté, ont recours à l’analyse prédictive pour estimer les performances potentielles de nouveaux films et ajuster leurs campagnes publicitaires en conséquence.

Cette polyvalence démontre que la Business Analytics s’impose comme un élément clé dans plusieurs industries, apportant des bénéfices concrets en matière de prise de décision, d’optimisation des opérations et d’innovation.

Les Compétences Requises pour une Carrière en Business Analytics

Pour débuter une carrière en analyse commerciale, un panel de compétences diversifié est requis, notamment en statistiques, en programmation et en communication. Comprendre les méthodes statistiques pour examiner des données et anticiper des tendances est fondamental.

L’aptitude à manipuler des outils d’analyse s’avère également indispensable. Cela englobe la maîtrise de langages comme Python ou R et la compétence pour travailler sur des plateformes SQL destinées à la gestion de bases de données. Savoir visualiser les données via des outils comme Tableau ou Power BI est un autre atout, permettant de rendre les résultats accessibles et intuitifs.

Au-delà des compétences purement techniques, l’analyse commerciale exige également un bon sens de la communication et du travail en équipe. Savoir décomposer des résultats analytiques complexes en messages simples pour les parties prenantes non initiées est crucial. Des aptitudes en pensée critique et en résolution de problèmes complètent le profil, aidant à cerner les enjeux d’analyse, à concevoir des stratégies adaptées et à contextualiser les résultats.

Ainsi, une carrière réussie en analyse commerciale allie des compétences techniques, des capacités d’analyse et des qualités relationnelles pour fournir une réelle plus-value aux entreprises.

Tendances Actuelles dans le Business Analytics

Le secteur de la Business Analytics est en pleine mutation, avec l’émergence de plusieurs tendances cruciales. Parmi celles-ci, l’intégration de l’intelligence artificielle (IA) et de l’apprentissage automatique dans les pratiques d’analyse prend de l’ampleur. L’objectif est d’exploiter ces technologies pour détecter des schémas plus élaborés et pour automatiser un nombre croissant de fonctions analytiques, ouvrant ainsi la voie à des solutions plus avancées et prédictives.

Une autre évolution notable est le recours croissant à l’analyse en temps réel. Les entreprises s’orientent de plus en plus vers des dispositifs permettant une prise de décision immédiate en se basant sur des données en cours de production. Ceci requiert des infrastructures de données et d’analyse agiles et performantes, ainsi que l’adoption de technologies comme le traitement en mémoire et les plateformes d’analyse en temps réel.

La question de la confidentialité et de la sécurité des données reste également un enjeu de taille. Une attention accrue est portée aux techniques d’anonymisation et de sécurisation des données pour répondre à ces préoccupations.

En résumé, la Business Analytics poursuit sa transformation pour s’adapter aux besoins fluctuants des entreprises dans un environnement toujours plus centré sur les données. Les évolutions en matière d’IA, d’analyse en temps réel et de sécurité des données soulignent l’importance grandissante de ce domaine dans la prise de décision et l’impulsion de l’innovation.

Comment apprendre?, Formations

Formation DevOps : pourquoi et comment devenir expert certifié ?

Alors que la méthode DevOps connaît un essor sans précédent, suivre une formation DevOps permet d’acquérir une expertise très recherchée en entreprise et hautement rémunérée. Découvrez pourquoi et comment suivre un tel programme !

Le monde a changé, transformé par internet et les logiciels. Dans toutes les industries, les applications logicielles occupent désormais une place essentielle en entreprise.

Ceci est valable pour tous les secteurs, de la banque au divertissement en passant par le commerce de détail ou la santé. Le logiciel fait désormais partie intégrante de toutes les divisions d’un business.

Des services en ligne sont utilisés par les entreprises pour interagir avec leurs clients, mais aussi pour optimiser la logistique et accroître la productivité au quotidien. Par conséquent, les exigences en termes de qualité ont fortement augmenté.

Les bugs et les dysfonctionnements ne sont plus tolérables, et de nouvelles fonctionnalités doivent être constamment ajoutées au fil du temps. Afin de s’adapter à ces nouvelles attentes, les entreprises adoptent désormais le modèle DevOps.

En combinant le développement et l’exploitation, le DevOps permet aux développeurs de mettre à jour leurs logiciels en continu en se basant sur les retours des utilisateurs. De même, les problèmes techniques peuvent être résolus beaucoup plus rapidement.

Le logiciel est évalué continuellement, et mis à jour en fonction. Cette méthodologie permet des logiciels plus stables, et par extension un produit de meilleure qualité pour l’utilisateur final.

Le DevOps s’impose aujourd’hui comme la principale approche du développement logiciel. Pour cette raison, les ingénieurs DevOps sont très recherchés en entreprise.

Ces experts sont hautement rémunérés, et le nombre d’offres d’emploi explose d’année en année. Suivre une formation DevOps permet d’acquérir toutes les compétences requises pour exercer cette profession.

Qu’est-ce que le DevOps ?

DevOps est une approche du développement logiciel. Elle repose sur la collaboration entre l’équipe de développement (Dev) et l’équipe d’exploitation (Ops).

Cette collaboration a lieu à toutes les étapes du développement logiciel, incluant la conception du produit, le testing, le déploiement et la maintenance technique.

 

En savoir plus sur le DevOps

Il s’agit d’un ensemble de pratiques et d’outils, mais aussi d’une culture et d’une philosophie permettant à une organisation de délivrer des applications et services beaucoup plus rapidement qu’avec les processus traditionnels.

Auparavant, les développeurs et les ops travaillaient en silo. Les développeurs étaient chargés de créer le logiciel, et l’équipe d’exploitation le prenait ensuite en charge intégralement.

Cette méthode présentait de nombreux défauts, et c’est pourquoi DevOps a vu le jour. Les deux équipes sont désormais unies, et les ingénieurs DevOps travaillent sur l’application tout au long de son cycle de vie : du développement au déploiement en passant par le testing, puis à l’exploitation au quotidien.

Les équipes DevOps automatisent les processus historiquement lents et manuels, et utilisent un stack technologique permettant de gérer et d’améliorer les applications de façon rapide et fiable.

En outre, cette nouvelle approche priorise le bon fonctionnement du logiciel. Ceci évite à la fois la frustration des équipes internes, et celle de l’utilisateur final.

Pourquoi suivre une formation DevOps ?

Suivre une formation DevOps permet d’accéder au métier d’ingénieur DevOps. Toutefois, un tel cursus peut s’avérer bénéfique pour tout professionnel impliqué dans la création de logiciels. Ceci concerne aussi bien le développement que l’exploitation quotidienne.

De manière générale, DevOps apporte de nombreux avantages aux organisations. Cette méthode permet tout d’abord de raccourcir le cycle de production, en éliminant les silos fonctionnels via la collaboration entre les équipes.

Elle permet également d’accroître le taux de succès des déploiements, en offrant la capacité de détecter les erreurs de programmation de manière précoce. Là encore, la collaboration permet de résoudre les problèmes techniques très rapidement.

Un autre avantage est l’automatisation des processus manuels de développement et de testing. En mettant l’accent sur la qualité du logiciel tout au long du processus de développement, DevOps réduit aussi les risques d’imprévus. Dans la même logique, l’approche DevSecOps consiste à ajouter la sécurité au cycle de développement pour éviter les problèmes par la suite.

Par ailleurs, une formation certifiante DevOps permet d’accroître votre employabilité et votre valeur sur le marché du travail. Les ingénieurs DevOps et autres experts comptent parmi les professionnels les plus recherchés et les mieux rémunérés du domaine de l’informatique.

À titre indicatif, selon Glassdoor, le salaire annuel moyen aux États-Unis s’élève à 92 000 $ pour un DevOps Release Manager, 125 000 $ pour un ingénieur de fiabilité des sites (SRE) et 115 000 $ pour un ingénieur DevOps. En France, selon Talent.com, un manager DevOps gagne 58 000 $ par an, un ingénieur DevOps 45 000€ par an, et un SRE 60 000€ par an.

Selon une étude de Grand View Resarch, le marché mondial du DevOps atteindra une valeur de 12,85 milliards de dollars en 2025. De plus, le Bureau of Labor Statistics des États-Unis prévoit une augmentation des offres d’emploi de 22% jusqu’en 2030 pour l’industrie du logiciel, contre 8% pour l’ensemble des emplois.

Quel est le programme d’une formation DevOps ?

Commencer une formation DevOps

En choisissant de suivre une formation DevOps, vous pourrez acquérir toutes les compétences requises pour devenir un professionnel de ce domaine. Voici les différentes notions que l’on retrouve dans ces cursus.

Tout d’abord, un langage de programmation comme Python est indispensable pour écrire des scripts et automatiser les tâches. Dans certains cas, la maîtrise de VB-Script et Windows PowerShell est également requise pour un poste DevOps.

L’expert doit aussi savoir créer des tests automatisés à l’aide d’outils dédiés. Ces derniers doivent être incorporés au processus de relaxe automatisé du logiciel.

Les ingénieurs DevOps passent aussi beaucoup de temps sur la configuration des systèmes d’automatisation. Ils doivent aussi maîtriser l’infrastructure en tant que code (IaC) pour configurer l’infrastructure et l’environnement à l’aide d’un langage de programmation.

Une autre compétence essentielle du DevOps est le maniement des systèmes de gestion de version comme Git. Ces outils permettent le suivi des changements apportés à la base de code, et la restauration des versions précédentes en cas de problème.

Par ailleurs, de solides compétences en networking sont indispensables. La connaissance du protocole IP, des certificats et du routing est un précieux atout pour résoudre les éventuels problèmes liés au réseau. Même au sein d’un environnement cloud ou d’un conteneur, il est important de savoir comment fonctionnent les réseaux.

 

Quels sont les principaux outils DevOps ?

Une formation DevOps permet aussi d’apprendre à manier les outils DevOps les plus populaires. En guise d’exemple, on peut citer Puppet permettant de délivrer et déployer des changements rapidement et fréquemment sur un logiciel avec des fonctionnalités de gestion de version, de testing automatisé et de livraison continue.

Avec Ansible, les équipes peuvent automatiser tout le cycle de vie d’une application et gérer les déploiements les plus compliqués. Un autre outil de gestion continue est Chef.

Les experts DevOps doivent aussi manier les solutions d’intégration continue comme Travis CI, Bamboo et Jenkins. L’outil de conteneurisation Docker permet de tester des applications au sein d’un environnement isolé incluant le système d’exploitation et toutes les dépendances, sur un serveur ou une machine virtuelle.

Nagios permet quant à lui la surveillance de l’infrastructure IT, et aide à détecter les erreurs pour les corriger rapidement. C’est un outil de monitoring continu, à l’instar de Sensu et Splunk.

Les certifications DevOps

Les meilleures formations DevOps permettent d’obtenir une certification professionnelle. Un tel titre vous permet d’étoffer votre CV, d’augmenter vos prétentions salariales, et de démontrer votre expertise.

Il existe de nombreuses certifications DevOps, mais certaines sont plus reconnues que d’autres par les employeurs. Voici quelques exemples des plus valorisées.

La certification AWS Certified DevOps Engineer démontre la capacité à tester et déployer l’infrastructure et les applications AWS. Elle témoigne aussi d’une expertise sur les plateformes cloud en général, notamment pour l’implémentation et l’automatisation des processus de gouvernance ou des contrôles de sécurité.

Amazon Web Services étant la plateforme de cloud public la plus utilisée, ses certifications comptent parmi les plus demandées en entreprise. Selon Indeed, on comptait plus de 32 000 postes d’ingénieurs DevOps AWS début 2022, rien qu’aux États-Unis. Cette certification est idéale pour les ingénieurs DevOps travaillant sur AWS ou un autre cloud.

En guise d’alternative, la certification Azure DevOps Engineer Expert est également très reconnue. Elle démontre la maîtrise des processus DevOps, et plus particulièrement la capacité à travailler avec des personnes, des processus et des technologies pour délivrer une valeur continue.

Vous devrez manier les stratégies d’ingénierie de fiabilité des sites, de sécurité et de conformité. Les compétences en gestion de version, en intégration continue et en collaboration sont également évaluées. De plus, la maîtrise du cloud Microsoft Azure est attendue pour cette certification spécialisée.

La certification Docker Certified Associate (DCA) confirme la maîtrise de l’outil Docker simplifiant le développement et le déploiement de logiciels grâce aux conteneurs. Il s’agit d’un outil phare du DevOps, notamment pour le testing continu.

Pour l’obtenir, vous devrez apprendre à manier Docker et les conteneurs en général. Les compétences en orchestration, création d’images, gestion, installation, configuration ou encore en sécurité sont nécessaires. Comptez environ un an d’expérience sur Docker pour réussir l’examen.

La certification Certified Kubernetes Administrator (CKA) indique une capacité à gérer et configurer des clusters sur Kubernetes : la plateforme open source de gestion de conteneurs logiciels.

Elle s’adresse aux professionnels IT gérant des instances Kubernetes, tels que les administrateurs Kubernetes et les administrateurs cloud. Pour l’obtenir, vous devrez prouver vos connaissances en architecture de cluster, en installation, en configuration, en networking, en workloads et en stockage.

Les professionnels DevOps utilisent aussi Puppet pour automatiser les processus, afin de délivrer des changements d’infrastructure plus rapidement et créer de meilleurs logiciels. Cet outil de gestion de système permet d’automatiser et de gérer la configuration de serveur.

Ainsi, l’examen Puppet Certified Professionnal permet d’obtenir une certification validant la maîtrise du logiciel Puppet. Vos compétences techniques et votre expérience seront mises à l’épreuve, et vous devrez comprendre les concepts liés aux stratégies de classification, à la résolution de problèmes dans le code, à la création de modules, à l’orchestration ou à l’administration.

Comment suivre une formation DevOps ?

Pour acquérir une expertise DevOps, vous pouvez choisir DevUniversity. Nos formations vous permettent d’apprendre à manier les outils DevOps, et à appliquer les meilleures pratiques liées à cette méthodologie.

Le cursus se complète intégralement à distance, et notre organisme est éligible au Compte Personnel de Formation pour le financement. N’attendez plus et découvrez DevUniversity !

S’inscrire à une formation DevOps