Browsing Category

Définitions

Cette catégorie reprend l’ensemble des définitions utiles à un Data Scientist

Définitions

Tout savoir sur le reporting de durabilité CSRD ou Corporate Sustainability Reporting Directive

Si votre entreprise a acquis une certaine envergure, il est possible qu’elle soit concernée par la nouvelle directive européenne CSRD. Celle-ci a trait aux performances en matière de développement durable : celles-ci doivent désormais faire l’objet d’un reporting spécifique. Qui est concerné par cette directive ? Et que faire pour affronter cette nouvelle charge administrative de taille ?…

Vous le savez sans doute : l’Europe s’est fixé un objectif ambitieux. Celui de parvenir à la neutralité carbone d’ici 2050. Dans le cadre de ce vaste programme qui touche de nombreux secteurs d’activité, en avril 2021, la Commission Européenne a initié le CSRD, soit une réglementation qui contraint les entreprises d’une certaine envergure à un reporting lié à leurs actions durables. En bref, nous avons là une incitation forte à opérer de façon vertueuse. Et oui… L’Europe a à cœur d’encourager les initiatives allant dans le sens de la protection de l’environnement. Mais commençons par le commencement.

CSRD, ça veut dire quoi au juste ?

CSRD est l’abréviation de Corporate Sustainability Reporting Directive. Mais encore ? Dans la langue de Molière, cela nous donne : Directive sur les Rapports de Développement Durable des Entreprises. 

 Prendre en compte les enjeux climatiques

Toute l’idée est donc d’inciter les entreprises à prendre en compte les enjeux climatiques et sociétaux dans leurs efforts de développement. Parmi les objectifs fixés figurent :

  • Encourager les investissements durables, par l’usage de matériaux recyclables, de composants peu énergivores, etc.
  • Lutter contre le greenwashing, cette pratique de marketing mise en œuvre par certaines entreprises pour donner l’impression qu’elles agissent en faveur de l’environnement alors que ce n’est pas réellement le cas.

Dans la pratique, cette directive se traduit par l’obligation, pour des entreprises ayant atteint une certaine taille, de pratiquer un reporting « extra-financier » (non lié à leurs performances économiques), ayant trait à leur impact environnemental et leurs actions dans le sens de la durabilité.

Une directive contraignante

Le CSRD fait suite à l’adoption au niveau européen de 12 normes regroupées sous le label ESRS, soit European Sustainability Reporting Standards ou normes européennes d’information en matière de durabilité. Pour faire simple, nous avons là une tentative:

  • d’uniformiser les critères relatifs aux activités environnementales, car jusqu’alors, à la différence des informations financières, elles n’étaient pas bien normalisées avec notamment de multiples labels.
  • de favoriser la transparence, afin d’éviter les tentatives de greenwashing. Avec des critères qui se veulent a priori compréhensibles par tous, et donc plus accessibles.
  • de faciliter la comparaison entre les entreprises. Le CSRD va aider à distinguer les entreprises performantes en matière de durabilité.

Pour celui qui dirige une société, voir débarquer de nouvelles contraintes n’est jamais appréciable. Autant le savoir, les questions auxquelles il faut répondre de manière obligatoire sont plus de trois cent – 10 thématiques sont optionnelles. L’entreprise doit préciser quel est son domaine d’activité et sa chaîne de valeur, mais aussi indiquer une feuille de route quant à la gestion de son impact écologique. Voilà donc bien une charge importante pour l’entreprise, sachant qu’elle est déjà tenue à un reporting sur ses performances financières

Pourquoi ajouter de nouvelles servitudes, assorties de sanctions et d’amendes en cas de non conformité, diront certains ? Il apparaît que l’urgence de prendre des mesures de protection de la planète, telle que l’ont souligné les études menées par des organismes tels que le GIEC, a primé. Et donc, il ne paraît pas possible de s’y soustraire dès lors qu’on entre dans les critères de sélection…

Se former au CSRD sur Power BI

Quelles entreprises sont concernées ?

Bien évidemment, la question qui va poindre est celle-ci : mon entreprise est-elle concernée, et à quelle échéance ? Commençons par une nouvelle rassurante : même si le CSRD est entré en vigueur au début de 2024, les premiers rapports sont attendus pour le début 2025. Ce qui revient à dire que les intéressés vont disposer d’une année pour apprivoiser ces nouvelles normes. Et ce n’est pas de trop, si l’on en croit ceux qui ont commencé à s’y frotter, car le CSRD est présenté comme fort complexe. Certains spécialistes évoquent un vaste bouleversement, notamment dans les PME, qui accusent une forte impréparation sur un thème tel que l’évaluation de leur bilan carbone. D’autres experts affirment qu’il est quasi impossible de répondre à toutes les questions demandées par le CSRD et qu’il faut y aller progressivement. 

En réalité, il existait déjà depuis 2014 une obligation de reporting intitulé la NFRD (Non Financial Reporting Directive), mais elle ne touchait que 11000 entreprises – comptant plus de 500 salariés -, et montrait des insuffisances sur divers points.

Alors qui est concerné par la CSRD et qui en est exempté ? Près de 55 000 entreprises au total…

Les sociétés cotées en Bourse

Les sociétés cotées sur les marchés  réglementés doivent assurer le reporting CSRD, à l’exclusion toutefois des micro-entreprises, soit celles employant moins de 11 salariés. Pour ce qui est des PME cotées, il est bon de savoir que cette catégorie d’entreprise bénéficie d’obligations de reporting allégées.

Les entreprises européenne d’une certaine taille

Trois critères sont pris en compte ici. Dès lors que deux d’entre eux, sont satisfaits, l’entreprise entre dans le cadre du CSRD:

  • plus de 250 salariés,
  • 40 millions d’euros de chiffre d’affaires,
  • 20 millions d’euros au bilan.

Les grandes entreprises non européennes

Les entreprises extra-européennes qui réalisent un chiffre d’affaires de 150 millions d’euros sur le sol européen sont concernées par le CSRD.

La morale de cette histoire…

Il en est ainsi. Les entreprises ne sont plus appelées à briller par leurs seuls résultats économiques. Elles doivent désormais montrer qu’elles sont performantes au niveau de leurs responsabilités sociales et environnementales. À chacun de transformer cette obligation en opportunité de développements. Après tout, il n’est pas rare que de simples individus s’interrogent aujourd’hui sur les actions réalisées par une entreprise donnée en termes de biodiversité et sujets annexes. Et de plus en plus, ces critères peuvent peser sur le choix d’un prestataire donné. 

Alors, en s’habituant à un reporting précis en la matière, une entreprise va pouvoir mieux répondre à de telles questions et parfois emporter certains contrats pour lesquels la décision ne tenait qu’à quelques points distinctifs.

Maîtriser Power BI pour le CSRD

Shema de neural networks
Définitions

Neural networks : qu’est-ce qu’un réseau de neurones

Dans le domaine en constante évolution de l’intelligence artificielle, les réseaux de neurones, ou neural networks en anglais, émergent comme des piliers fondamentaux de la technologie. Ces constructions inspirées du cerveau humain ont révolutionné la manière dont les machines apprennent et interprètent des données.

Cet article plongera au cœur des neural networks, explorant leur fonctionnement, leurs applications et leur impact croissant sur des domaines aussi variés que la reconnaissance d’images, le traitement du langage naturel et la résolution de problèmes complexes.

Introduction aux Neural Networks

Les Neural Networks, également connus sous le nom de réseaux de neurones artificiels, constituent une pierre angulaire de l’intelligence artificielle et du domaine du machine learning. Les réseaux neuronaux représentent des modèles mathématiques sophistiqués conçus pour analyser des données et exécuter des missions complexes. À la base, un réseau de neurones est constitué de plusieurs couches interconnectées, chacune contenant des « neurones » artificiels qui traitent et transmettent les informations.

L’objectif fondamental des neural networks est d’apprendre à partir des données. Ils sont capables de détecter des motifs, des tendances et des relations au sein de la data, ce qui les rend particulièrement adaptés à des tâches telles que la reconnaissance d’images, la traduction automatique, la prédiction de séquences et bien plus encore. En ajustant les poids et les biais des connexions entre les neurones en fonction des données d’entraînement, les neural networks sont en mesure de généraliser leurs apprentissages et d’appliquer ces connaissances à de nouvelles données, ce qui en fait des outils puissants pour résoudre une variété de problèmes complexes.

Fonctionnement des Neurones Artificiels

Les éléments fondamentaux des réseaux de neurones, appelés neurones artificiels, s’inspirent du fonctionnement des neurones biologiques du cerveau humain. Chaque neurone artificiel reçoit des signaux d’entrée pondérés, qui sont sommés. Si cette somme dépasse un seuil, le neurone s’active, générant ainsi une sortie. Cette sortie devient l’entrée pour les neurones de la couche suivante. Les connexions entre les neurones sont liées à des poids, qui dictent l’importance de chaque connexion dans le calcul de la sortie. Les neurones artificiels apprennent en ajustant ces poids avec les données d’entraînement.

Les réseaux de neurones se déploient en couches : entrée, cachées et sortie. Les données d’entrée passent par la couche d’entrée, puis traversent les couches cachées où les calculs se déroulent. La couche de sortie fournit le résultat final. Des fonctions d’activation insérées dans les neurones introduisent des seuils non linéaires, capturant ainsi des relations complexes entre les données. Par des algorithmes d’apprentissage, les poids des connexions s’ajustent pour réduire la différence entre prédictions et sorties réelles, optimisant ainsi la généralisation du réseau pour obtenir des résultats précis sur de nouvelles données.

Les Différents Types de Neural Networks

Les réseaux de neurones, base fondamentale de l’apprentissage profond, se diversifient en types variés, adaptés à des tâches spécifiques. Parmi eux se trouvent les réseaux de neurones feedforward, aussi appelés perceptrons multicouches (MLP), qui comportent des couches successives de neurones. Ils sont utilisés pour la classification, la régression et la reconnaissance de motifs.

Les réseaux de neurones convolutifs (CNN), quant à eux, se focalisent sur les données structurées comme les images. Ils emploient des couches de convolution pour extraire des caractéristiques, suivies de sous-échantillonnage pour réduire les données. Les CNN excellent dans la reconnaissance d’images, la détection d’objets et la segmentation. D’autre part, les réseaux de neurones récurrents (RNN) se concentrent sur les séquences, comme le langage naturel. Leur architecture gère les dépendances temporelles et les entrées variables, utiles pour la traduction, la génération de texte et l’analyse de sentiment. Chaque type de réseau de neurones présente des avantages selon les données et les objectifs d’apprentissage.

Deep Learning et Couches Profondes dans les Neural Networks

Le Deep Learning, une sous-branche de l’apprentissage automatique, s’est révélé être une avancée majeure dans la réalisation de tâches complexes en utilisant des réseaux de neurones profonds. L’idée fondamentale derrière le Deep Learning est de construire des réseaux de neurones comportant plusieurs couches de traitement, également appelées couches profondes. Ces couches multiples permettent aux réseaux de capturer des représentations hiérarchiques et abstraites des données, améliorant ainsi leur capacité à résoudre des problèmes de plus en plus complexes.

Les couches profondes d’un réseau de neurones sont composées de neurones connectés en série, chacun effectuant une transformation mathématique des données qu’il reçoit en entrée. Les premières couches du réseau sont généralement responsables de l’extraction de caractéristiques simples, telles que les bords ou les formes basiques, tandis que les couches ultérieures combinent ces caractéristiques pour former des représentations plus complexes et sémantiques. L’ensemble du processus d’apprentissage vise à ajuster les poids et les biais des neurones afin de minimiser l’erreur entre les sorties prédites du réseau et les véritables étiquettes.

L’avantage clé des réseaux de neurones profonds réside dans leur capacité à apprendre des modèles de données à différents niveaux d’abstraction, ce qui les rend adaptés à une variété de tâches, de la reconnaissance d’images à la traduction automatique. Cependant, la profondeur accrue des réseaux ajoute également à la complexité de l’entraînement et à la nécessité de techniques avancées pour éviter le surapprentissage. Malgré ces défis, le Deep Learning a propulsé les performances de l’apprentissage automatique à de nouveaux sommets, ouvrant la voie à des applications innovantes et à des avancées significatives dans divers domaines.

Generative Adversarial Networks (GAN)

Les Réseaux Générateurs Adversaires (GAN) représentent une avancée révolutionnaire dans le domaine de l’intelligence artificielle, en particulier dans la génération de contenu réaliste comme des images, des vidéos et même du texte. Les GAN ont été introduits en 2014 par Ian Goodfellow et ses collègues, et depuis lors, ils ont suscité un grand engouement pour leur capacité à créer des données nouvelles et authentiques à partir de zéro.

L’architecture des GAN est basée sur deux réseaux neuronaux profonds antagonistes : le générateur et le discriminateur. Le générateur crée des données synthétiques, tandis que le discriminateur essaie de faire la distinction entre les données réelles et générées. Au fil de l’entraînement, le générateur s’améliore en essayant de tromper le discriminateur, et celui-ci s’améliore en distinguant de mieux en mieux entre les deux types de données.

Le processus de compétition entre le générateur et le discriminateur permet aux GAN de produire des données de haute qualité qui sont difficilement distinguables des données réelles. Cette technologie a eu un impact majeur sur la création d’art numérique, la synthèse de vidéos, la génération de scénarios pour les simulations et même la création de visages humains synthétiques réalistes. Cependant, les GAN ne sont pas sans leurs défis, notamment en ce qui concerne la stabilité de l’entraînement et le contrôle de la qualité des données générées. Malgré cela, les GAN continuent de susciter un intérêt croissant et ouvrent de nouvelles perspectives passionnantes pour la création et la manipulation de contenu numérique.

Tendances Futures dans le Domaine des Neural Networks

Le domaine des réseaux neuronaux connaît actuellement une croissance exponentielle, avec des avancées et des tendances futures qui ouvrent de nouvelles perspectives passionnantes. L’une de ces tendances est l’expansion continue du Deep Learning vers des domaines tels que la vision par ordinateur, le traitement du langage naturel et même la science des données. Les architectures de réseaux neuronaux de pointe, telles que les réseaux neuronaux convolutifs (CNN) et les réseaux récurrents, sont constamment affinées pour obtenir des performances encore meilleures dans des tâches complexes comme la traduction automatique, la compréhension du langage naturel et la reconnaissance d’objets.

Une autre tendance prometteuse est l’intégration de l’intelligence artificielle dans les objets quotidiens via l’Internet des Objets (IoT). Les réseaux neuronaux embarqués sur des dispositifs connectés permettront des interactions plus intelligentes et personnalisées avec nos environnements. De plus, la montée en puissance du traitement automatisé des langues naturelles et la génération de contenu multimédia par les réseaux neuronaux soulèvent des questions passionnantes sur la créativité, l’éthique et les limites de l’IA.

Alors que l’industrie continue de s’appuyer sur les réseaux neuronaux pour résoudre des problèmes de plus en plus complexes, la collaboration interdisciplinaire, les innovations algorithmiques et les percées matérielles joueront un rôle crucial dans la définition des prochaines tendances. Les réseaux neuronaux ne cessent d’évoluer et de remodeler le paysage technologique, ouvrant la voie à un avenir où l’intelligence artificielle sera de plus en plus intégrée dans notre quotidien.

Table de travail d'un business analyst
Définitions

Analyse Commerciale : Découvrez le monde de la Business Analytics

Dans le paysage commercial actuel, l’analyse est devenue un pilier essentiel pour orienter les choix stratégiques et favoriser la croissance. L’émergence du Big Data et des innovations technologiques a donné lieu à une discipline indispensable : la Business Analytics. Ce champ d’expertise explore et valorise les données pour révéler des insights pertinents, des tendances occultes et des orientations stratégiques. Il permet ainsi aux entreprises de prendre des décisions avisées tout en acquérant un avantage compétitif.

Qu’est-ce que la Business Analytics ?

La Business Analytics, aussi connue sous le nom d’analyse commerciale, est une discipline essentielle en affaires. Elle concerne la collecte, le traitement et l’analyse de données dans le but de fournir des insights actionnables. Ce champ permet aux entreprises de s’appuyer sur des données concrètes pour orienter leur stratégie, plutôt que sur de simples hypothèses. Au lieu de se limiter à l’examen des tendances historiques, la Business Analytics exploite des méthodes avancées pour révéler des motifs, relations et opportunités souvent méconnus. Par l’emploi de techniques variées, comme les analyses statistiques et les modèles prédictifs, elle aide les organisations à mieux comprendre leur position actuelle, à prévoir les évolutions futures et à optimiser leurs opérations.

Elle couvre une gamme variée de secteurs, de la finance au marketing en passant par la gestion des ressources humaines et la logistique. Elle intègre non seulement les données internes, mais aussi des informations externes pour offrir une vue globale. Avec les progrès technologiques et la montée en puissance de l’intelligence artificielle, la Business Analytics a évolué de manière significative. Elle propose désormais des solutions sophistiquées en matière de visualisation de données, de prédiction de tendances et d’optimisation des processus. En résumé, elle est devenue un levier essentiel pour toute organisation cherchant à prendre des décisions fondées dans un environnement d’affaires en constante mutation.

Différence entre Business Analytics et Business Intelligence

Bien que les termes « Business Analytics » et « Business Intelligence » puissent parfois être considérés comme synonymes, ils se distinguent par leurs approches et leurs objectifs en matière de données d’affaires. La Business Intelligence (BI) met l’accent sur l’agrégation, l’organisation et la visualisation des données historiques de l’entreprise. Elle offre une perspective rétrospective, alimentant ainsi la prise de décisions basées sur des informations passées.

À l’inverse, la Business Analytics (BA) va plus loin en s’intéressant à l’anticipation des performances à venir. Elle utilise des méthodes sophistiquées comme l’analyse prédictive, la modélisation statistique et même l’apprentissage machine pour éclairer sur des tendances, des relations et des corrélations inexplorées. Son but ultime est d’orienter des décisions stratégiques et opérationnelles plus éclairées. En somme, tandis que la BI se consacre à une compréhension rétrospective des données, la BA se focalise sur des analyses avancées pour guider l’avenir.

L’Impact du Business Analytics sur la Prise de Décision

L’adoption de la Business Analytics dans le processus décisionnel a révolutionné la stratégie d’entreprise. Avec une analyse de données poussée, les dirigeants disposent d’éléments concrets pour orienter leurs choix. Ces outils d’exploration révèlent des tendances et des relations complexes, souvent sources d’aperçus inattendus. Ainsi, les entreprises peuvent non seulement anticiper des opportunités mais aussi des risques, tout en s’appuyant sur des données fiables pour leurs décisions.

L’influence de la Business Analytics s’étend également à l’efficacité opérationnelle. En ajustant les processus internes à partir des analyses de données, les organisations ont la possibilité de minimiser les coûts, maximiser la productivité et améliorer le service client. Par exemple, l’exploration de données peut mettre en lumière des zones d’inefficacité dans la chaîne d’approvisionnement, optimiser la gestion des stocks ou encore personnaliser l’expérience client. À l’ère du numérique, la Business Analytics constitue un levier stratégique pour les entreprises cherchant à se démarquer et à s’adapter dans un environnement dynamique.

Exemples Concrets d’Application

Dans divers secteurs d’activité, la Business Analytics trouve des applications concrètes. En commerce de détail, elle permet, via l’analyse prédictive, d’anticiper les goûts des consommateurs pour une gestion optimale des stocks et une réponse efficace à la demande. Elle intervient également dans la tarification dynamique pour s’ajuster en temps réel selon la demande et les concurrents.

En santé, la Business Analytics facilite la prise de décisions médicales en prédisant les admissions futures et en allouant judicieusement les ressources. Elle aide aussi à cerner les facteurs de risque pour les patients et accélère la découverte de nouveaux médicaments.

Dans le secteur des médias et du divertissement, elle joue également un rôle significatif. Les services de streaming utilisent ces analyses pour personnaliser les recommandations, augmentant ainsi l’engagement utilisateur. Les studios de cinéma, de leur côté, ont recours à l’analyse prédictive pour estimer les performances potentielles de nouveaux films et ajuster leurs campagnes publicitaires en conséquence.

Cette polyvalence démontre que la Business Analytics s’impose comme un élément clé dans plusieurs industries, apportant des bénéfices concrets en matière de prise de décision, d’optimisation des opérations et d’innovation.

Les Compétences Requises pour une Carrière en Business Analytics

Pour débuter une carrière en analyse commerciale, un panel de compétences diversifié est requis, notamment en statistiques, en programmation et en communication. Comprendre les méthodes statistiques pour examiner des données et anticiper des tendances est fondamental.

L’aptitude à manipuler des outils d’analyse s’avère également indispensable. Cela englobe la maîtrise de langages comme Python ou R et la compétence pour travailler sur des plateformes SQL destinées à la gestion de bases de données. Savoir visualiser les données via des outils comme Tableau ou Power BI est un autre atout, permettant de rendre les résultats accessibles et intuitifs.

Au-delà des compétences purement techniques, l’analyse commerciale exige également un bon sens de la communication et du travail en équipe. Savoir décomposer des résultats analytiques complexes en messages simples pour les parties prenantes non initiées est crucial. Des aptitudes en pensée critique et en résolution de problèmes complètent le profil, aidant à cerner les enjeux d’analyse, à concevoir des stratégies adaptées et à contextualiser les résultats.

Ainsi, une carrière réussie en analyse commerciale allie des compétences techniques, des capacités d’analyse et des qualités relationnelles pour fournir une réelle plus-value aux entreprises.

Tendances Actuelles dans le Business Analytics

Le secteur de la Business Analytics est en pleine mutation, avec l’émergence de plusieurs tendances cruciales. Parmi celles-ci, l’intégration de l’intelligence artificielle (IA) et de l’apprentissage automatique dans les pratiques d’analyse prend de l’ampleur. L’objectif est d’exploiter ces technologies pour détecter des schémas plus élaborés et pour automatiser un nombre croissant de fonctions analytiques, ouvrant ainsi la voie à des solutions plus avancées et prédictives.

Une autre évolution notable est le recours croissant à l’analyse en temps réel. Les entreprises s’orientent de plus en plus vers des dispositifs permettant une prise de décision immédiate en se basant sur des données en cours de production. Ceci requiert des infrastructures de données et d’analyse agiles et performantes, ainsi que l’adoption de technologies comme le traitement en mémoire et les plateformes d’analyse en temps réel.

La question de la confidentialité et de la sécurité des données reste également un enjeu de taille. Une attention accrue est portée aux techniques d’anonymisation et de sécurisation des données pour répondre à ces préoccupations.

En résumé, la Business Analytics poursuit sa transformation pour s’adapter aux besoins fluctuants des entreprises dans un environnement toujours plus centré sur les données. Les évolutions en matière d’IA, d’analyse en temps réel et de sécurité des données soulignent l’importance grandissante de ce domaine dans la prise de décision et l’impulsion de l’innovation.

Définitions

Data Strategist : Quels sont les outils et missions de cet expert ?

Dans cet article, vous découvrirez ce qu’est le métier de Data Strategist. Vous allez pouvoir vous familiariser avec les différentes missions, les compétences indispensables et les outils de ce métier tant recherché ainsi que les atouts que ce rôle représente pour une entreprise et dans votre carrière.

Pour commencer, vous devez savoir qu’un Data Strategist est la personne qui va prendre en charge la gestion et l’analyse des données. Il va ensuite agir auprès des structures afin d’identifier les besoins de son activité principale et par la suite il élaborera un projet de développement, capable d’impacter des domaines aussi variés que le marketing, l’IT ou le business.

Quelles sont les missions d’un Data Strategist ?

  • Exécution de la stratégie avec le Chief Data Officer
  • Proposition de réponse innovantes et créatives dans le domaine de la data
  • Planification et chefferie de projets
  • Accompagnement des clients dans la compréhension de l’impact du Big Data
  • Conception, architecture et développement de solution d’intelligence artificielle
  • Développement des options dans le domaine de la Big Data
  • Analyse de leads 
  • Assistance aux équipes de développement commercial dans les activités d’avant-vente et les appels d’offres

Diagramme de Venn pour le Data Strategist

Les trois cercles présents dans ce diagramme représentent les trois domaines de connaissances les plus importants pour un Data Strategist :

  • Business
  • Communication
  • Data & Technologie

Le Data Strategist travaille principalement sur le côté business de la data. Il devra proposer des idées afin d’améliorer l’expansion de l’entreprise ou son organisation. À l’instar d’un chef de projet, il encadre les équipes fonctionnelles, recueille le besoin, gère les plannings, définit la stratégie technique et commerciale mais dans le domaine spécifique de la Big Data.

Quelles sont les compétences que doit avoir un Data Strategist ?

  • Diplôme d’une école de commerce ou d’ingénieur
  • Expériences significatives en Data Strategy, Data Gouvernance, Data Management
  • Maîtrise des technologies de gouvernance, Master Data Management, Analytics, Intelligence Artificielle, Business Intelligence
  • Aptitude en relation humaines et communication
  • Niveau d’anglais courant
  • Bonne compréhension du Machine Learning
  • Appétence pour l’analyse statistique
  • Esprit d’entreprise
  • Compétences en matière d’organisation

Quels sont les outils utilisés ?

Le Data Strategist utilise principalement Microsoft Power BI, qui est une solution d’analyse de données et un outil incontournable dans ce domaine, permettant d’effectuer les tâches suivantes :

  • La transformation des données
  • La modélisation et visualisation des données
  • La configuration de tableaux de bord, de rapports et applications

Pour permettre la mise en place d’un projet Cloud dans son intégralité, vous aurez besoin de maîtriser AWS qui régit les fonctions suivantes :

  • Conception des architectures résilientes et sécurisées
  • Infrastructure mondiale et fiabilité
  • Réseaux
  • Stockage base de données
  • Présentation du Well Architect Framework et des avantages du cloud

Les atouts de la profession

Les métiers de la data (Data Strategist, Data Scientist, Data Analyst ou Data Engineer) sont en pleine expansion. Peu de profils compétents sont disponibles sur le marché et les entreprises souffrent d’un cruel manque de ressources pour gérer et traiter leurs données.
C’est un domaine dans lequel vous trouverez pleine et entière satisfaction professionnelle, tant sur le plan de la stimulation intellectuelle que sur la montée en compétences constante, où les perspectives d’évolution sont prometteuses.
En complément des points spécifiés en amont, le salaire d’un Data Strategist représente un attrait supplémentaire. Il est évalué selon plusieurs critères :

  • Le niveau d’étude
  • Les compétences acquises
  • Les différentes expériences dans le domaine
  • Le type de structure qui recrute

De manière générale, la rémunération est plus élevée dans le privé que dans le secteur public, dont l’indice n’est pas forcément réévalué annuellement. La fourchette salariale pour la profession se situe entre 34000€ et 58000€ brut.
Vous savez maintenant tout sur le métier de Data Strategist.
Si vous souhaitez vous reconvertir dans ce domaine, n’hésitez pas à découvrir notre formation Power BI et AWS.

Définitions

Validation croisée ou « cross validation » : Qu’est ce que c’est ?

Il existe plusieurs outils statistiques destinés à évaluer les performances des différents modèles d’apprentissage automatique. Le cross validation, aussi appelé « validation croisée », en fait partie. Fondée sur une technique d’échantillonnage, la validation croisée est utilisée en Machine Learning pour évaluer des modèles d’apprentissage-machine. 

Qu’est-ce que la validation croisée ? Quelles sont les différentes techniques de validation ? Pourquoi utiliser un jeu de données équilibrées ? Comment devenir un professionnel en validation croisée ? Les réponses à ces questions dans cet article.

Qu’est-ce que la validation croisée ?

La validation croisée : une technique d’échantillonnage

Très souvent utilisée en apprentissage automatique, la validation croisée est une technique d’évaluation permettant d’estimer la fiabilité d’un modèle d’apprentissage automatique. Plus explicitement, il s’agit d’une technique de rééchantillonnage. Elle repose sur un principe simple : utiliser un ensemble de données pour ensuite les diviser en deux catégories. Ce sont :

  • les données d’entraînement utilisées pour entraîner le modèle,
  • les données test utilisées pour la prédiction.

Pourquoi une validation croisée est-elle indispensable ?

Une Machine Learning fait appel à plusieurs modèles d’apprentissage automatique. C’est en partant de ces modèles que la validation croisée estime la fiabilité d’un modèle. Chaque modèle d’apprentissage est fondé sur des sous-ensembles de données d’entrée.
Via une technique d’échantillonnage, la validation croisée atteste si une hypothèse est valide ou non. Elle facilite donc le choix d’un algorithme adapté pour réaliser une tâche définie. On a également recours à la validation pour détecter un surajustement. En se basant sur un échantillon de prétendument issu de la même population d’échantillons d’apprentissage, la validation croisée :

  • ne modélise pas les données de la même manière,
  • démontre l’échec de la généralisation d’une tendance.

Une validation croisée permet d’estimer la fiabilité et la précision du modèle. À partir du moment où le modèle fonctionne sur les données de test, cela signifie qu’il n’a pas réajusté les données d’entraînement. Autrement dit, il peut tout à fait être utilisé pour la prédiction.

Se former au cross validation

Quelles sont les différentes techniques de validation croisée ?

On dénote plusieurs techniques de validation croisée. Les principales sont :

  • le train-test split,
  • la méthode k-folds.

Le train-test split

Le principe de base du train-test split est de décomposer l’ensemble des données de manière aléatoire. Une partie servira à entraîner le modèle de Machine Learning. L’autre partie, quant à elle, permet de réaliser le test de validation. En règle générale, 70 à 80 % des données seront destinés à l’entraînement. Le reste, c’est-à-dire les 20 à 30 %, seront exploités pour le cross validation.
Cette technique s’avère fiable et très efficace. Toutefois, les données disponibles sont limitées. Puisque certaines données n’ont pas été utilisées pour l’entraînement, les informations peuvent donc être manquantes. Ce qui risque de biaiser hautement les résultats. Par contre, la technique du train-test split convient parfaitement à partir du moment où il y a une distribution égale entre les deux échantillons.

La méthode k-folds

Très facile à appréhender et très populaire, la méthode k-folds est l’une des méthodes les plus utilisées par les professionnels. Elle consiste à diviser l’échantillon original en échantillons ou en blocs. De cette façon, l’ensemble des données apparaitra aussi bien dans l’ensemble des données d’entraînements que dans l’ensemble des données test.
Un paramétrage unique dénommé « K » est inséré dans la procédure. Idéalement, K devrait avoir une valeur ni trop basse ni trop haute : entre 5 et 10 selon l’envergure du dataset. Par la suite, il convient d’ajuster le modèle en utilisant des folds K-1 (moins 1). On répétera ce processus jusqu’à ce que tous les K-folds servent au sein de l’ensemble d’entraînement.
La moyenne des scores enregistrés représente la métrique de performance du modèle. À noter que la méthode k-folds peut s’effectuer manuellement ou à l’aide des fonctions cross_val_score et cross_val_predict. Ces dernières se trouvent dans la bibliothèque Python Scikit Learn.

Maîtriser les techniques de validation croisée

Pourquoi utiliser un jeu de données équilibrées ?

En présence d’un jeu de données déséquilibrées, il devient plus difficile de réaliser une cross validation. D’une manière plus concise, une base de données est déséquilibrée quand le nombre d’observations par classe n’est pas le même d’une classe à une autre. Résultat : les algorithmes se trouvent biaisés.
Pour renflouer leur fonction de perte, les algorithmes optimisent les métriques. Ils auront tendance à générer un classifieur trivial regroupant chaque exemple dans la classe majoritaire. Par conséquent, le modèle obtenu ne sera que le reflet de la surreprésentation de la classe majoritaire. Pour y remédier, bon nombre de professionnels ont recours à la validation croisée stratifiée ou « stratified cross validation ».
Cette méthode a pour but principal de s’assurer que la répartition des classes soit la même au niveau de tous les ensembles de validation et d’apprentissage à utiliser. Face à un jeu de données déséquilibrées, générer des échantillons synthétiques constitue une excellente alternative.

BeautifulSoup
Définitions

Beautiful Soup : tout savoir sur la bibliothèque Python de Data Scraping

Le web est une véritable mine de données informatiques. Ces données peuvent être exploitées, analysées pour une infinité de cas d’usage et d’applications. On peut les utiliser pour nourrir des systèmes de Machine Learning, d’intelligence artificielle, ou tout simplement pour mettre en lumière des tendances et des phénomènes.

S’il est possible de collecter ces données manuellement afin de constituer de vastes datasets, cette tâche représente un travail de titan. Afin de l’automatiser, on utilise le Web Scraping.

Qu’est-ce que le Web Scraping ?

Le Web Scraping est un processus qui consiste à assembler des informations en provenance d’internet, à l’aide de divers outils et frameworks. Cette définition est très large, et même le fait de copier / coller les paroles d’une chanson peut être considéré comme une forme de Web Scraping.

Toutefois, le terme de Web Scraping désigne généralement un processus impliquant l’automatisation. Les volumes massifs de données sont collectés automatiquement, afin de constituer de vastes datasets.

Certains sites web s’opposent à la collecte de leurs données par des scrapers automatiques. En règle générale, le scraping à des fins éducatives est plus toléré que pour un usage commercial. Il est important de consulter les conditions d’utilisation d’un site avant d’initier un projet.

À quoi sert le Web Scraping ?

Le Web Scraping permet d’agréger des informations plus rapidement qu’avec une collecte manuelle. Il n’est plus nécessaire de passer de longues heures à cliquer, à dérouler l’écran ou à rechercher les données.

Cette méthode se révèle particulièrement utile pour amasser de très larges volumes de données en provenance de sites web régulièrement mis à jour avec du nouveau contenu. Le scraping manuel est une tâche chronophage et rébarbative.

À l’échelle individuelle, le Web Scraping peut se révéler utile pour automatiser certaines tâches. Par exemple, un demandeur d’emploi peut utiliser Python pour automatiser ses recherches d’offres. Quelques lignes de code permettent d’enregistrer automatiquement les nouvelles annonces publiées sur des plateformes comme Indeed ou Monster, afin de ne plus avoir à visiter ces sites web quotidiennement.

web-scraping-beautiful-soup

Le Web Scraping peut aussi être utilisé pour surveiller des changements de prix, comparer des prix, ou surveiller la concurrence en collectant des sites web en provenance de leurs sites web. Les possibilités sont nombreuses et diverses.

Toutefois, cette méthode se révèle surtout pertinente pour les projets Big Data nécessitant d’immenses volumes de données. Par exemple, l’entreprise ClearView AI a utilisé le Web Scraping sur les réseaux sociaux afin de constituer une immense base de données de photos de profils pour son logiciel de reconnaissance faciale.

Le Web Scraping est presque aussi vieux qu’internet. Alors que le World Wide Web fut lancé en 1989, le World Wide Web Wanderer a été créé quatre ans plus tard. Il s’agit du premier robot web créé par Matthew Gray du MIT. Son objectif était de mesurer la taille du WWW.

Les défis du Web Scraping

Depuis sa création, internet a beaucoup évolué. On y trouve une large variété de types et formats de données, et le web scraping comporte donc plusieurs difficultés.

Le premier défi à relever est celui de la variété. Chaque site web est différent et unique, et nécessite donc un traitement spécifique pour l’extraction d’informations pertinentes.

En outre, les sites web évoluent constamment. Un script de Web Scraping peut donc fonctionner parfaitement la première fois, mais se heurter ensuite à des dysfonctionnements en cas de mise à jour.

Dès que la structure d’un site change, le scraper peut ne plus être capable de naviguer la ” sitemap ” correctement ou de trouver des informations pertinentes. Heureusement, la plupart des changements apportés aux sites web sont minimes et incrémentaux, et un scraper peut donc être mis à jour avec de simples ajustements.

Néanmoins, face à la nature dynamique d’internet, les scrapers nécessitent généralement une maintenance constante. Il est possible d’utiliser l’intégration continue pour lancer périodiquement des tests de scraping et s’assurer que les scripts fonctionnent correctement.

Les APIs en guise d’alternative au Web Scraping

Certains sites web proposent des APIs (interface de programmation d’application) permettant d’accéder à leurs données de manière prédéfinie. Ces interfaces permettent d’accéder aux données directement en utilisant des formats comme JSON et XML, plutôt que de s’en remettre au parsing de HTML.

L’utilisation d’une API est en général un processus plus stable que l’agrégation de données via le Web Scraping. Pour cause, les développeurs créent des APIs conçues pour être consommées par des programmes plutôt que par des yeux humains.

API-beautiful-soup

La présentation front-end d’une site web peut souvent changer, mais un tel changement dans le design d’un site web n’affecte pas la structure de son API. Cette structure est généralement plutôt permanente, ce qui en fait une source plus fiable de données.

Néanmoins, les APIs aussi peuvent changer. Les défis liés à la variété et à la durabilité s’appliquent donc aussi bien aux APIs qu’aux sites web. Il est également plus difficile d’inspecter la structure d’une API par soi-même si la documentation fournie n’est pas suffisamment complète.

Qu’est-ce que Beautiful Soup ?

Beautiful Soup est une bibliothèque Python utilisée pour le Web Scraping. Elle permet d’extraire des données en provenance de fichiers XML ou HTML. Cette bibliothèque crée un arbre de parsing à partir du code source de la page, pouvant être utilisé pour extraire les données de manière hiérarchique et lisible.

À l’origine, Beautiful Soup fut introduite en mai 2006 par Leonard Richardson qui continue à contribuer au projet. En outre, le projet est soutenu par Tidelift et son outil de maintenance open-source proposé par abonnement payant.

En plus de ses hautes performances, Beautiful Soup apporte plusieurs avantages. Cet outil permet de parcourir les pages de la même manière qu’un navigateur, et enjolive le code source.

Comment apprendre à utiliser Beautiful Soup et Python ?

Afin d’apprendre à utiliser Beautiful Soup, vous pouvez choisir DataScientest. Leur formation Data Analyst commence avec un module dédié à la programmation en Python, et comporte un module dédié à l’extraction de données textes et au Web Scraping.

Les autres modules de ce cursus couvrent la Dataviz, le Machine Learning, les bases de données Big Data et la Business Intelligence. À l’issue du programme, vous aurez toutes les compétences requises pour exercer le métier de Data Analyst.

Toutes nos formations adoptent une approche Blended Learning combinant coaching individuel sur notre plateforme en ligne et Masterclass. Le programme peut être complété en Formation Continue ou en mode BootCamp intensif.

À la fin du cursus, vous recevrez un certificat délivré par l’Université Paris la Sorbonne dans le cadre de notre partenariat. Parmi les alumnis, 80% ont trouvé un emploi immédiatement après la formation.

Nos programmes sont éligibles au Compte Personnel de Formation pour le financement. N’attendez plus et découvrez la formation Data Analyst de DataScientest !

Vous savez tout sur Beautiful Soup. Découvrez notre dossier complet sur le langage Python, et notre dossier sur le métier de Data Analyst.

pandas-bibliothèque-python
Définitions

Pandas : une bibliothèque Python pour manipuler facilement des données

La bibliothèque Pandas est certainement la plus utile pour les data scientist sous le langage Python. Elle permet d’explorer, transformer, visualiser et comprendre vos données afin d’en retirer le maximum d’informations. Voyons ensemble dans quelles cas l’utiliser et ses fonctions les plus courantes.

Si vous évoluez dans la data science, vous avez sûrement entendu parler de la bibliothèque Pandas. Son nom n’a rien à voir avec ce petit animal d’Asie qui ressemble à un ours. Le nom «Pandas» est une contraction des mots «Panel Data» et «Python Data Analysis». Pandas est donc une bibliothèque open-source proposant différentes fonctions qui permettent la manipulation et l’analyse de données en Python de manière simple et intuitive. C’est donc une bibliothèque polyvalente qui vous permettra de réaliser facilement des analyses de données complexes. La bibliothèque Pandas permet également de créer facilement des graphes, très utiles dans la Data Analyse.

Première force de Pandas, elle se base sur la bibliothèque Numpy

Grand avantage de Pandas, elle se base sur la très populaire bibliothèque Numpy. Cette bibliothèque fournit une pléiade de structures de données et d’opérations qui permettent de traiter des données numériques et des données chronologiques. La bibliothèque Pandas est également importante car ses données sont souvent utilisées comme base pour les fonctions de plotting de Matplotlib, une autre bibliothèque renommée utilisant le langage Python. Les données issues de Pandas sont aussi très utiles dans l’analyse statistique en SciPy, les algorithmes de Machine Learning en Scikit-learn. La bibliothèque Pandas est également très utilisée dans le traitement et l’analyse des données tabulaires (vous pourrez stocker vos données sous le format .csv, .tsv et .xlsx) en entrant des requêtes de type SQL.

Les Séries, les Dataframes et le Panel : les principales structures de données de Python Panda

Si vous utilisez Pandas, vous travaillerez principalement avec deux structures de données, les Séries et les Dataframes.

Les Séries : Une Série est un tableau unidimensionnel étiqueté qui peut contenir des données de n’importe quel type (entier, chaîne, flottant, objets python, etc.). En d’autres mots, les séries sont équivalentes aux colonnes dans un tableau Excel. Les étiquettes des axes sont collectivement appelées index.

Pandas en général est utilisé pour les données de séries chronologiques financières ou des données économiques. Ce langage dispose de nombreux assistants intégrés pour gérer les données financières. Grâce à Numpy, vous pourrez facilement gérer de grands tableaux multidimensionnels pour le calcul scientifique.

tableau-multidimensionnel

La Dataframe : c’est une structure de données bidimensionnelle, c’est-à-dire que les données sont alignées de façon tabulaire en lignes et en colonnes. On peut la comparer en quelque sorte à un classeur Excel. La Dataframe Pandas est particulièrement puissante car elle permet de :
  • charger des données provenant de différentes sources.
  • réaliser facilement des statistiques et calculer la moyenne, la médiane, le maximum et le minimum de chaque colonne et les corrélations entre chacune d’entre elles.
  • nettoyer facilement les données en supprimant les valeurs manquantes ou en filtrant les lignes ou les colonnes selon certains critères.
  • visualiser les données avec l’aide de Matplotlib. Tracez des barres, des lignes, des histogrammes, des bulles, etc.
  • elle permet de stocker les données nettoyées et transformées dans un CSV, TSV ou XLSX.

La Dataframe vous permet également de créer vos propres fonctions Python pour effectuer certaines tâches de calcul et les appliquer aux données de vos Dataframes.

En utilisant les Séries et les Dataframes on peut donc facilement manipuler des données et les représenter.

Enfin, le Panel est un conteneur important pour les données en 3 dimensions. Les noms des 3 axes sont destinés à décrire les opérations impliquant des données de panel et, en particulier, l’analyse économétrique de ces données. L’analyse économétrique est une analyse quantitative, permettant de vérifier l’existence de certaines relations entre des phénomènes économiques et de mesurer concrètement ces relations sur la base d’observations de faits réels. On peut par exemple observer les notes des élèves d’une classe et les comparer sur les devoirs rendus durant les trois trimestres d’une année scolaire.

Pandas, un langage essentiel en Data Science et en Machine Learning

Pandas est un outil particulièrement populaire en science des données il est particulièrement reconnu pour le traitement et l’analyse des données. En effet, Pandas est très utile dans le nettoyage, la transformation, la manipulation et l’analyse de données. En d’autres mots, Pandas aide les Data Scientists à mettre de l’ordre dans leurs données ce qui représente selon certains près de 80% de leur travail.

En ce qui concerne le Machine Learning, Pandas est tout aussi reconnu comme un outil de choix. Ces fonctions permettent notamment d’explorer, de transformer mais aussi de créer une visualisation de la donnée.

En effet, Pandas est souvent accompagné de la bibliothèque Scikit-learn, c’est le package de machine learning de Python. L’utilisation de Scikit-learn intervient dans un deuxième temps après le passage de Pandas dans la première phase d’exploration de la donnée dans un projet de Data Science.

Se former à Pandas avec DataScientest

Code sur écran d'ordinateur
Définitions

Qu’est-ce que la Data Science ? À quoi sert-elle ? Pourquoi est-elle importante aujourd’hui ?

Il y a beaucoup de discussions sur ce qu’est la Data Science ou Science des données. Mais, nous pouvons la résumer par la phrase suivante : « La Data Science est la discipline du 21e siècle qui convertit les données en connaissances utiles ».

La Data Science combine plusieurs domaines, dont les statistiques, les méthodes scientifiques (scientific methods) et l’analyse des données (analyzing data). Elle permet d’extraire de la valeur dans les données, de la collecte de celles-ci (Data Collections) à l’analyse prédictive (Predictive Analytics) en passant par la présentation des résultats (Data Visualization). Le praticien de la Science des données est le Data Scientist qui travaille de près avec d’autres experts du Big Data tels que le Data Analyst et le Data Engineer (Data Science Team).

Qu’est-ce que la Data Science ?

En termes simples, la Science des données consiste à appliquer l’analyse prédictive pour tirer le meilleur parti des informations d’une entreprise. Il ne s’agit pas d’un produit, mais d’un ensemble d’outils (parfois Open source) et de techniques interdisciplinaires intégrant les statistiques (statistical analysis et statistical modeling), l’informatique (computer science) et les technologies de pointe (Artificial Intelligence AI et Machine Learning models) qui aident le Data Scientist à transformer les données en informations stratégiques (actionable insights).

La plupart des entreprises sont aujourd’hui submergées de données et ne les utilisent probablement pas à leur plein potentiel. C’est là qu’intervient le Data Scientist qui met à leur service ses compétences uniques en matière de Science des données pour les aider à transformer les informations en données stratégiques significatives et en véritable avantage concurrentiel (Data Driven Marketing).

En appliquant la Data Science, une organisation peut prendre des décisions en toute confiance et agir en conséquence, car elle travaille avec des faits et la méthode scientifique, plutôt qu’avec des intuitions et des suppositions.

Que font exactement les Data Scientists ?

Statistiques sur papier

Les Data Scientists sont des experts dans trois groupes de disciplines :

          Les statistiques et les mathématiques appliquées

          L’informatique

          L’expertise commerciale

Si les Scientifiques des données peuvent avoir une expertise en physique, en ingénierie, en mathématiques et dans d’autres domaines techniques ou scientifiques, ils doivent également comprendre les objectifs stratégiques de l’entreprise pour laquelle ils travaillent afin d’offrir de réels avantages commerciaux.

Le travail quotidien d’un Data Scientist consiste à :

          Définir un problème ou une opportunité commerciale

          Gérer et à analyser toutes les données pertinentes pour le problème

          Construire et tester des modèles pour fournir des aperçus et des prédictions

          Présenter les résultats aux parties prenantes de l’entreprise

          Écrire du code informatique pour exécuter la solution choisie

Lorsqu’il fait du codage, il applique ses connaissances d’une combinaison de langages utilisés pour la gestion des données et l’analyse prédictive tels que Python, R, SAS et SQL/PostgreSQL.

Enfin, le Data Scientist est également chargé d’analyser et de communiquer les résultats commerciaux réels.

En raison du grand nombre de compétences spécifiques impliquées, les scientifiques de données qualifiés sont difficiles à identifier et à recruter. En outre, leur maintien au sein d’une équipe interne est coûteux pour une organisation.

Pourquoi la Data Science est-elle soudainement si importante ?

La théorie mathématique et statistique qui sous-tend la Data Science est importante depuis des décennies. Mais, les tendances technologiques récentes ont permis la mise en œuvre industrielle de ce qui n’était auparavant que de la théorie. Ces tendances font naître un nouveau niveau de demande pour la Science des données et un niveau d’excitation sans précédent quant à ce qu’elle peut accomplir :

          L’essor du Big Data et de l’Internet des objets (IoT)

La transformation numérique du monde des affaires a donné lieu à une énorme quantité de données (amounts of data) et différents jeux de données (data sets) sur les clients, les concurrents, les tendances du marché et d’autres facteurs clés. Comme ces données proviennent de nombreuses sources et peuvent être non structurées, leur gestion est un défi. Il est difficile, voire impossible pour les groupes internes (analystes d’entreprise traditionnels et équipes informatiques travaillant avec les systèmes existants) de gérer et d’appliquer cette technologie par eux-mêmes.

          La nouvelle accessibilité de l’Intelligence artificielle (IA)

L’Artificial Intelligence (Intelligence artificielle) et la Machine Learning (apprentissage automatique) qui relevaient autrefois de la science-fiction sont désormais monnaie courante et arrivent juste à temps pour relever le défi du Big Data. Le volume, la variété et la vitesse des données ayant augmenté de manière exponentielle, la capacité à détecter des modèles et à faire des prédictions dépasse la capacité de la cognition humaine et des techniques statistiques traditionnelles. Aujourd’hui, l’Intelligence artificielle et l’apprentissage automatique sont nécessaires pour effectuer des tâches robustes de classification, d’analyse et de prédiction des données.

          Les gains énormes en puissance de calcul

La Data Science ne serait pas possible sans les récentes améliorations majeures de la puissance de calcul. Une percée cruciale a été de découvrir que les processeurs informatiques conçus pour restituer des images dans les jeux vidéos seraient également adaptés aux applications d’apprentissage automatique et d’Intelligence artificielle. Ces puces informatiques avancées sont capables de gérer des algorithmes mathématiques et statistiques extrêmement sophistiqués et fournissent des résultats rapides même pour les défis les plus complexes, ce qui les rend idéales pour les applications de science des données.

          Nouvelles techniques de stockage des données, y compris l’informatique dématérialisée

La Data Science dépend d’une capacité accrue à stocker des données de toutes sortes à un coût raisonnable. Les entreprises peuvent désormais stocker raisonnablement des pétaoctets (ou des millions de gigaoctets) de données, qu’elles soient internes ou externes, structurées ou non structurées, grâce à une combinaison hybride de stockage sur site et en nuage.

          Intégration de systèmes

La Data Science met en relation toutes les parties de votre organisation. Une intégration étroite et rapide des systèmes est donc essentielle. Les technologies et systèmes conçus pour déplacer les données en temps réel doivent s’intégrer de manière transparente aux capacités de modélisation automatisée qui exploitent les algorithmes de Machine Learning pour prédire un résultat. Les résultats doivent ensuite être communiqués aux applications en contact avec la clientèle, avec peu ou pas de latence, afin d’en tirer un avantage.

Quels avantages une entreprise peut-elle tirer de la Data Science ?

Réunion business

La Data Science peut offrir un large éventail de résultats financiers et d’avantages stratégiques, en fonction du type d’entreprise, de ses défis spécifiques et de ses objectifs stratégiques.

Par exemple, une société de services publics pourrait optimiser un réseau intelligent pour réduire la consommation d’énergie en s’appuyant sur des modèles d’utilisation et de coûts en temps réel. Un détaillant pourrait appliquer la Science des données aux informations du point de vente pour prédire les achats futurs et sélectionner des produits personnalisés.

Les constructeurs automobiles utilisent activement la Data Science pour recueillir des informations sur la conduite dans le monde réel et développer des systèmes autonomes grâce à la Machine Learning. Les fabricants industriels utilisent la Science des données pour réduire les déchets et augmenter le temps de fonctionnement des équipements.

Dans l’ensemble, la Data Science et l’Intelligence artificielle sont à l’origine des avancées en matière d’analyse de texte, de reconnaissance d’images et de traitement du langage naturel qui stimulent les innovations dans tous les secteurs.

La Science des données peut améliorer de manière significative les performances dans presque tous les domaines d’une entreprise de ces manières, entre autres :

          Optimisation de la chaîne d’approvisionnement

          Augmentation de la rétention des employés

          Compréhension et satisfaction des besoins des clients

          Prévision avec précision des paramètres commerciaux

          Suivi et amélioration de la conception et des performances des produits.

La question n’est pas de savoir ce que la Data Science peut faire. Une question plus juste serait de savoir ce qu’il ne peut pas faire. Une entreprise dispose déjà d’énormes volumes d’informations stockées ainsi que d’un accès à des flux de données externes essentiels. La Science des données peut tirer parti de toutes ces informations pour améliorer pratiquement tous les aspects des performances d’une organisation, y compris ses résultats financiers à long terme.

Quel est l’avenir de la Data Science ?

La Data Science est de plus en plus automatisée et le rythme de l’automatisation va sûrement se poursuivre.

Historiquement, les statisticiens devaient concevoir et ajuster les modèles statistiques manuellement sur une longue période, en utilisant une combinaison d’expertise statistique et de créativité humaine. Mais aujourd’hui, alors que les volumes de données et la complexité des problèmes d’entreprise augmentent, ce type de tâche est si complexe qu’il doit être traité par l’Intelligence artificielle, l’apprentissage automatique et l’automatisation. Cette tendance se poursuivra à mesure que le Big Data prendra de l’ampleur.

L’Intelligence artificielle et l’apprentissage automatique sont souvent associés à l’élimination des travailleurs humains. Mais, ils ne font en réalité qu’accroître l’essor des Citizen Data Scientists, ces professionnels de la Data Science sans formation formelle en mathématiques et statistiques.

En conclusion, rien n’indique que l’automatisation remplacera les spécialistes des données, les ingénieurs de données et les professionnels des DataOps qualifiés. Il faut autant de créativité humaine que possible à différentes étapes pour tirer parti de toute la puissance de l’automatisation et de l’Intelligence artificielle.

jeu-de-données
Définitions

Qu’est-ce qu’un jeu de données ?

Un jeu de données ou data set est un ensemble ou une collection de données. Cet ensemble prend forme dans un tableau avec des lignes et des colonnes. Chaque colonne décrit une variable particulière. Et chaque ligne correspond à un élément donné de l’ensemble de données. Cela fait partie de la gestion des données.

Les ensembles de données décrivent les valeurs de chaque variable pour des quantités inconnues d’un objet ou des valeurs de nombres aléatoires. Les valeurs de cet ensemble sont appelées une donnée. L’ensemble de données se compose de données d’un ou plusieurs éléments correspondant à chaque ligne.

Les différents types de jeux de données

Dans les statistiques, il existe différents types de jeux de données publiés :

  • Jeu de données numériques : un ensemble de chiffres tels que le poids et la taille d’une personne, son âge, le taux de globule rouge dans son sang dans son rapport médical, etc.
  • Jeu de données bivariées : un ensemble de données qui a deux variables comme le rapport poids/puissance d’une voiture par exemple.
  • Jeu de données multivariées : un ensemble de données à plusieurs variables comme le volume des colis qui nécessite trois variables (longueur, largeur et hauteur).
  • Jeu de données catégorielles : un ensemble de données catégorielles qui représentent les caractéristiques d’une personne ou d’un objet.
  • Jeu de données de corrélation : un ensemble de données qui démontrent la corrélation entre plusieurs variables ou données par exemple.

Comment créer un jeu de données ?

Il existe différentes manières de créer des jeux de données . En effet, il existe plusieurs liens menant vers des sources contenant toutes sortes de jeux de données. Certains d’entre eux seront des données générées par des robots. D’autres sont produites par des outils de Business intelligence créés à partir de la Machine Learning. D’autres seront des données collectées via des enquêtes. Il existe également des jeux de données enregistrées à partir d’observations humaines ou extraites des sites Web et des API.

machine-learning-jeu-de-données

Avant de travailler sur un jeu de données, il est important de répondre aux questions suivantes :

  1. D’où viennent les données ?
  2. Comment cet ensemble de données est-il été créé ?

Il ne faut pas se lancer directement dans l’analyse. L’idéal est de prendre le temps de comprendre d’abord les données sur lesquelles travailler.

Les jeux de données publiques pour les projets de visualisation de données

Lorsqu’on recherche un bon jeu de données pour un projet de visualisation de données :

  • Bien ordonné pour ne pas avoir à passer beaucoup de temps à nettoyer les données.
  • Suffisamment nuancé et intéressant pour faire des graphiques.
  • Chaque colonne doit être bien claire de sorte que la visualisation des données soit précise.
  • Pas trop de lignes ou de colonnes pour simplifier le travail.

De nombreux sites d’actualités publient des données ouvertes ou open data. Ils sont d’excellents endroits où trouver de bons jeux de données pour des projets de visualisation de données. Ils respectent la politique de confidentialité des gens qui ont permis de générer ces données. Généralement, ils le nettoient et proposent des graphiques pouvant être reproduits ou améliorés.

data-marketing
Définitions

Qu’est-ce que le data marketing ? Quelle est son importance ?

Avec l’explosion des données clients, notamment des données personnelles, les entreprises cherchent des moyens d’obtenir des informations sur ce qui les entoure. Cela est fait dans le respect de la politique de confidentialité soutenue par le RGPD (règlement général sur la protection des données). Afin d’obtenir une perspective de leur activité sur le marché, elles ont recours à ce que beaucoup ont convenu d’appeler le data marketing : les moyens de connaître et de planifier des actions marketing à travers la mesure et le contrôle des données.

Qu’est-ce que le data marketing ?

Le data marketing est la mesure et l’analyse de toutes les sources d’informations disponibles, y compris sur les réseaux sociaux. Cette approche est ce qui est défini comme étant le data driven marketing. Les entreprises qui l’appliquent peuvent prendre des décisions qui influencent le contrôle et la définition d’une stratégie marketing et commerciale.

On peut dire que le data marketing n’est pas un type de marketing spécifique à l’instar du marketing entrant ou du marketing digital par les moteurs de recherche (SEO, SEM…). Bien que ces types de marketing coexistent, ils sont en grande partie séquentiels. Chacun d’eux fait partie de différentes parties de ce que l’on appelle l’entonnoir de vente marketing.

entonoire-des-ventes-data-marketing

Les bases de données marketing couvrent tous les composants d’une stratégie marketing. Chacun des éléments d’un plan marketing doit pouvoir être mesurable. De par sa nature même, il est une pièce complémentaire à l’ensemble des actions marketing qu’une entreprise mène. Ainsi, il permet de connaître l’utilisation des données qui affectent l’ensemble de sa stratégie marketing, soutenant son activité passée et présente pour établir de nouvelles campagnes publicitaires.

Que faire des données ?

La chose fondamentale dans le data marketing est que les entreprises peuvent étudier les modèles de comportement, la tendance des utilisateurs et leurs habitudes. Une fois que tout cela a été détecté, elles ont la possibilité de définir clairement les actions à appliquer en marketing.

Pour ce faire, elles ont deux solutions. L’une est manuelle où elles évaluent et supervisent toutes les données avec leur équipe. L’autre est d’utiliser l’intelligence artificielle par le biais d’outils d’apprentissage automatique qui se charge de révéler le moment pour réaliser l’action de communication.

En remontant l’histoire d’au moins une dizaine d’années, les données fondamentales pour exercer le contrôle de l’information et la gestion des données ont commencé à être développées dans le marketing. Cela a permis d’avoir le contrôle de toutes les informations qui affectent une entreprise.

Des données importantes et volumineuses sont collectées par les entreprises à chaque seconde. Il est essentiel de les reconnaître, de les stocker, de les collecter, de les classer et de les exporter. Ces techniques doivent aller de pair pour faciliter la compréhension de tous les processus.

Comment appliquer le data marketing ?

Pour mettre en place le data marketing dans une stratégie marketing, toute entreprise doit connaître les points suivants :

  • Volume de données. Toutes les données nécessaires sont tirées du Big Data. Il est essentiel de détecter celles qui affectent ou non le business model.
  • Organisation et hiérarchie. Grâce à un diagramme de flux de travail marketing, on sélection les données. Puis, on les hiérarchise et les organise.
  • Accès rapide. Il faut disposer d’un processus pour pouvoir consulter immédiatement les données lorsque c’est nécessaire.
  • Plusieurs sources. Toute entreprise doit disposer de différentes sources de données du Big Data pour pouvoir les intégrer dans sa stratégie marketing.
  • Procédure de données. Il est important de connaître et de croiser toutes les variables. L’objectif est de pouvoir extraire les informations sans erreur.
  • Visualisation des données. Les informations doivent donner la possibilité de les représenter sous forme de graphiques ou d’images pour les rendre plus compréhensibles.

stratégie-marketing-data-science

En appliquant toutes ces recommandations, une entreprise possède une valeur ajoutée précieuse pour la prise de décision dans sa stratégie marketing. Pour faire simple, il s’agit d’un modèle de gestion intelligent des données.

Quels sont les avantages du data marketing ?

Parmi les avantages, on peut citer les suivants :

  • Facilite la prise de décision.
  • Améliore la capacité stratégique d’une entreprise.
  • Améliore la mesure du risque et la capacité de gestion de l’entreprise.
  • Aide à comprendre l’entreprise et les clients.
  • Donne la possibilité de rechercher de nouvelles opportunités d’affaires.
  • Soutiens la réalisation des objectifs de l’entreprise.