Browsing Category

Définitions

Cette catégorie reprend l’ensemble des définitions utiles à un Data Scientist

Définitions

Data Strategist : Quels sont les outils et missions de cet expert ?

Dans cet article, vous découvrirez ce qu’est le métier de Data Strategist. Vous allez pouvoir vous familiariser avec les différentes missions, les compétences indispensables et les outils de ce métier tant recherché ainsi que les atouts que ce rôle représente pour une entreprise et dans votre carrière. Pour commencer, vous devez savoir qu’un Data Strategist est la personne qui va prendre en charge la gestion et l’analyse des données. Il va ensuite agir auprès des structures afin d’identifier les besoins de son activité principale et par la suite il élaborera un projet de développement, capable d’impacter des domaines aussi variés que le marketing, l’IT ou le business.

Quelles sont les missions d’un Data Strategist ?

  • Exécution de la stratégie avec le Chief Data Officer
  • Proposition de réponse innovantes et créatives dans le domaine de la data
  • Planification et chefferie de projets
  • Accompagnement des clients dans la compréhension de l’impact du Big Data
  • Conception, architecture et développement de solution d’intelligence artificielle
  • Développement des options dans le domaine de la Big Data
  • Analyse de leads 
  • Assistance aux équipes de développement commercial dans les activités d’avant-vente et les appels d’offres

Diagramme de Venn pour le Data Strategist

Les trois cercles présents dans ce diagramme représentent les trois domaines de connaissances les plus importants pour un Data Strategist : 
  • Business 
  • Communication 
  • Data & Technologie 
Le Data Strategist travaille principalement sur le côté business de la data. Il devra proposer des idées afin d’améliorer l’expansion de l’entreprise ou son organisation. À l’instar d’un chef de projet, il encadre les équipes fonctionnelles, recueille le besoin, gère les plannings, définit la stratégie technique et commerciale mais dans le domaine spécifique de la Big Data.

Quelles sont les compétences que doit avoir un Data Strategist ?

  • Diplôme d’une école de commerce ou d’ingénieur
  • Expériences significatives en Data Strategy, Data Gouvernance, Data Management
  • Maîtrise des technologies de gouvernance, Master Data Management, Analytics, Intelligence Artificielle, Business Intelligence
  • Aptitude en relation humaines et communication
  • Niveau d’anglais courant 
  • Bonne compréhension du Machine Learning 
  • Appétence pour l’analyse statistique
  • Esprit d’entreprise
  • Compétences en matière d’organisation

Quels sont les outils utilisés ?

Le Data Strategist utilise principalement Microsoft Power BI, qui est une solution d’analyse de données et un outil incontournable dans ce domaine, permettant d’effectuer les tâches suivantes : 
  • La transformation des données 
  • La modélisation et visualisation des données
  • La configuration de tableaux de bord, de rapports et applications 
Pour permettre la mise en place d’un projet Cloud dans son intégralité, vous aurez besoin de maîtriser AWS qui régit les fonctions suivantes : 
  • Conception des architectures résilientes et sécurisées
  • Infrastructure mondiale et fiabilité
  • Réseaux
  • Stockage base de données
  • Présentation du Well Architect Framework et des avantages du cloud

Les atouts de la profession

Les métiers de la data (Data Strategist, Data Scientist, Data Analyst ou Data Engineer) sont en pleine expansion. Peu de profils compétents sont disponibles sur le marché et les entreprises souffrent d’un cruel manque de ressources pour gérer et traiter leurs données.  C’est un domaine dans lequel vous trouverez pleine et entière satisfaction professionnelle, tant sur le plan de la stimulation intellectuelle que sur la montée en compétences constante, où les perspectives d’évolution sont prometteuses.  En complément des points spécifiés en amont, le salaire d’un Data Strategist représente un attrait supplémentaire. Il est évalué selon plusieurs critères : 
  • Le niveau d’étude 
  • Les compétences acquises 
  • Les différentes expériences dans le domaine 
  • Le type de structure qui recrute 
De manière générale, la rémunération est plus élevée dans le privé que dans le secteur public, dont l’indice n’est pas forcément réévalué annuellement. La fourchette salariale pour la profession se situe entre 34000€ et 58000€ brut. Vous savez maintenant tout sur le métier de Data Strategist.  Si vous souhaitez vous reconvertir dans ce domaine, n’hésitez pas à découvrir notre formation Power BI et AWS  
Définitions

Validation croisée ou « cross validation » : Qu’est ce que c’est ?

Il existe plusieurs outils statistiques destinés à évaluer les performances des différents modèles d’apprentissage automatique. Le cross validation, aussi appelé « validation croisée », en fait partie. Fondée sur une technique d’échantillonnage, la validation croisée est utilisée en Machine Learning pour évaluer des modèles d’apprentissage-machine. 

Qu’est-ce que la validation croisée ? Quelles sont les différentes techniques de validation ? Pourquoi utiliser un jeu de données équilibrées ? Comment devenir un professionnel en validation croisée ? Les réponses à ces questions dans cet article.

Qu’est-ce que la validation croisée ?

La validation croisée : une technique d’échantillonnage

Très souvent utilisée en apprentissage automatique, la validation croisée est une technique d’évaluation permettant d’estimer la fiabilité d’un modèle d’apprentissage automatique. Plus explicitement, il s’agit d’une technique de rééchantillonnage. Elle repose sur un principe simple : utiliser un ensemble de données pour ensuite les diviser en deux catégories. Ce sont :

  • les données d’entraînement utilisées pour entraîner le modèle,
  • les données test utilisées pour la prédiction.

Pourquoi une validation croisée est-elle indispensable ?

Une Machine Learning fait appel à plusieurs modèles d’apprentissage automatique. C’est en partant de ces modèles que la validation croisée estime la fiabilité d’un modèle. Chaque modèle d’apprentissage est fondé sur des sous-ensembles de données d’entrée.
Via une technique d’échantillonnage, la validation croisée atteste si une hypothèse est valide ou non. Elle facilite donc le choix d’un algorithme adapté pour réaliser une tâche définie. On a également recours à la validation pour détecter un surajustement. En se basant sur un échantillon de prétendument issu de la même population d’échantillons d’apprentissage, la validation croisée :

  • ne modélise pas les données de la même manière,
  • démontre l’échec de la généralisation d’une tendance.

Une validation croisée permet d’estimer la fiabilité et la précision du modèle. À partir du moment où le modèle fonctionne sur les données de test, cela signifie qu’il n’a pas réajusté les données d’entraînement. Autrement dit, il peut tout à fait être utilisé pour la prédiction.

Se former au cross validation

Quelles sont les différentes techniques de validation croisée ?

On dénote plusieurs techniques de validation croisée. Les principales sont :

  • le train-test split,
  • la méthode k-folds.

Le train-test split

Le principe de base du train-test split est de décomposer l’ensemble des données de manière aléatoire. Une partie servira à entraîner le modèle de Machine Learning. L’autre partie, quant à elle, permet de réaliser le test de validation. En règle générale, 70 à 80 % des données seront destinés à l’entraînement. Le reste, c’est-à-dire les 20 à 30 %, seront exploités pour le cross validation.
Cette technique s’avère fiable et très efficace. Toutefois, les données disponibles sont limitées. Puisque certaines données n’ont pas été utilisées pour l’entraînement, les informations peuvent donc être manquantes. Ce qui risque de biaiser hautement les résultats. Par contre, la technique du train-test split convient parfaitement à partir du moment où il y a une distribution égale entre les deux échantillons.

La méthode k-folds

Très facile à appréhender et très populaire, la méthode k-folds est l’une des méthodes les plus utilisées par les professionnels. Elle consiste à diviser l’échantillon original en échantillons ou en blocs. De cette façon, l’ensemble des données apparaitra aussi bien dans l’ensemble des données d’entraînements que dans l’ensemble des données test.
Un paramétrage unique dénommé « K » est inséré dans la procédure. Idéalement, K devrait avoir une valeur ni trop basse ni trop haute : entre 5 et 10 selon l’envergure du dataset. Par la suite, il convient d’ajuster le modèle en utilisant des folds K-1 (moins 1). On répétera ce processus jusqu’à ce que tous les K-folds servent au sein de l’ensemble d’entraînement.
La moyenne des scores enregistrés représente la métrique de performance du modèle. À noter que la méthode k-folds peut s’effectuer manuellement ou à l’aide des fonctions cross_val_score et cross_val_predict. Ces dernières se trouvent dans la bibliothèque Python Scikit Learn.

Maîtriser les techniques de validation croisée

Pourquoi utiliser un jeu de données équilibrées ?

En présence d’un jeu de données déséquilibrées, il devient plus difficile de réaliser une cross validation. D’une manière plus concise, une base de données est déséquilibrée quand le nombre d’observations par classe n’est pas le même d’une classe à une autre. Résultat : les algorithmes se trouvent biaisés.
Pour renflouer leur fonction de perte, les algorithmes optimisent les métriques. Ils auront tendance à générer un classifieur trivial regroupant chaque exemple dans la classe majoritaire. Par conséquent, le modèle obtenu ne sera que le reflet de la surreprésentation de la classe majoritaire. Pour y remédier, bon nombre de professionnels ont recours à la validation croisée stratifiée ou « stratified cross validation ».
Cette méthode a pour but principal de s’assurer que la répartition des classes soit la même au niveau de tous les ensembles de validation et d’apprentissage à utiliser. Face à un jeu de données déséquilibrées, générer des échantillons synthétiques constitue une excellente alternative.

BeautifulSoup
Définitions

Beautiful Soup : tout savoir sur la bibliothèque Python de Data Scraping

Le web est une véritable mine de données informatiques. Ces données peuvent être exploitées, analysées pour une infinité de cas d’usage et d’applications. On peut les utiliser pour nourrir des systèmes de Machine Learning, d’intelligence artificielle, ou tout simplement pour mettre en lumière des tendances et des phénomènes.

S’il est possible de collecter ces données manuellement afin de constituer de vastes datasets, cette tâche représente un travail de titan. Afin de l’automatiser, on utilise le Web Scraping.

Qu’est-ce que le Web Scraping ?

Le Web Scraping est un processus qui consiste à assembler des informations en provenance d’internet, à l’aide de divers outils et frameworks. Cette définition est très large, et même le fait de copier / coller les paroles d’une chanson peut être considéré comme une forme de Web Scraping.

Toutefois, le terme de Web Scraping désigne généralement un processus impliquant l’automatisation. Les volumes massifs de données sont collectés automatiquement, afin de constituer de vastes datasets.

Certains sites web s’opposent à la collecte de leurs données par des scrapers automatiques. En règle générale, le scraping à des fins éducatives est plus toléré que pour un usage commercial. Il est important de consulter les conditions d’utilisation d’un site avant d’initier un projet.

À quoi sert le Web Scraping ?

Le Web Scraping permet d’agréger des informations plus rapidement qu’avec une collecte manuelle. Il n’est plus nécessaire de passer de longues heures à cliquer, à dérouler l’écran ou à rechercher les données.

Cette méthode se révèle particulièrement utile pour amasser de très larges volumes de données en provenance de sites web régulièrement mis à jour avec du nouveau contenu. Le scraping manuel est une tâche chronophage et rébarbative.

À l’échelle individuelle, le Web Scraping peut se révéler utile pour automatiser certaines tâches. Par exemple, un demandeur d’emploi peut utiliser Python pour automatiser ses recherches d’offres. Quelques lignes de code permettent d’enregistrer automatiquement les nouvelles annonces publiées sur des plateformes comme Indeed ou Monster, afin de ne plus avoir à visiter ces sites web quotidiennement.

web-scraping-beautiful-soup

Le Web Scraping peut aussi être utilisé pour surveiller des changements de prix, comparer des prix, ou surveiller la concurrence en collectant des sites web en provenance de leurs sites web. Les possibilités sont nombreuses et diverses.

Toutefois, cette méthode se révèle surtout pertinente pour les projets Big Data nécessitant d’immenses volumes de données. Par exemple, l’entreprise ClearView AI a utilisé le Web Scraping sur les réseaux sociaux afin de constituer une immense base de données de photos de profils pour son logiciel de reconnaissance faciale.

Le Web Scraping est presque aussi vieux qu’internet. Alors que le World Wide Web fut lancé en 1989, le World Wide Web Wanderer a été créé quatre ans plus tard. Il s’agit du premier robot web créé par Matthew Gray du MIT. Son objectif était de mesurer la taille du WWW.

Les défis du Web Scraping

Depuis sa création, internet a beaucoup évolué. On y trouve une large variété de types et formats de données, et le web scraping comporte donc plusieurs difficultés.

Le premier défi à relever est celui de la variété. Chaque site web est différent et unique, et nécessite donc un traitement spécifique pour l’extraction d’informations pertinentes.

En outre, les sites web évoluent constamment. Un script de Web Scraping peut donc fonctionner parfaitement la première fois, mais se heurter ensuite à des dysfonctionnements en cas de mise à jour.

Dès que la structure d’un site change, le scraper peut ne plus être capable de naviguer la ” sitemap ” correctement ou de trouver des informations pertinentes. Heureusement, la plupart des changements apportés aux sites web sont minimes et incrémentaux, et un scraper peut donc être mis à jour avec de simples ajustements.

Néanmoins, face à la nature dynamique d’internet, les scrapers nécessitent généralement une maintenance constante. Il est possible d’utiliser l’intégration continue pour lancer périodiquement des tests de scraping et s’assurer que les scripts fonctionnent correctement.

Les APIs en guise d’alternative au Web Scraping

Certains sites web proposent des APIs (interface de programmation d’application) permettant d’accéder à leurs données de manière prédéfinie. Ces interfaces permettent d’accéder aux données directement en utilisant des formats comme JSON et XML, plutôt que de s’en remettre au parsing de HTML.

L’utilisation d’une API est en général un processus plus stable que l’agrégation de données via le Web Scraping. Pour cause, les développeurs créent des APIs conçues pour être consommées par des programmes plutôt que par des yeux humains.

API-beautiful-soup

La présentation front-end d’une site web peut souvent changer, mais un tel changement dans le design d’un site web n’affecte pas la structure de son API. Cette structure est généralement plutôt permanente, ce qui en fait une source plus fiable de données.

Néanmoins, les APIs aussi peuvent changer. Les défis liés à la variété et à la durabilité s’appliquent donc aussi bien aux APIs qu’aux sites web. Il est également plus difficile d’inspecter la structure d’une API par soi-même si la documentation fournie n’est pas suffisamment complète.

Qu’est-ce que Beautiful Soup ?

Beautiful Soup est une bibliothèque Python utilisée pour le Web Scraping. Elle permet d’extraire des données en provenance de fichiers XML ou HTML. Cette bibliothèque crée un arbre de parsing à partir du code source de la page, pouvant être utilisé pour extraire les données de manière hiérarchique et lisible.

À l’origine, Beautiful Soup fut introduite en mai 2006 par Leonard Richardson qui continue à contribuer au projet. En outre, le projet est soutenu par Tidelift et son outil de maintenance open-source proposé par abonnement payant.

En plus de ses hautes performances, Beautiful Soup apporte plusieurs avantages. Cet outil permet de parcourir les pages de la même manière qu’un navigateur, et enjolive le code source.

Comment apprendre à utiliser Beautiful Soup et Python ?

Afin d’apprendre à utiliser Beautiful Soup, vous pouvez choisir DataScientest. Leur formation Data Analyst commence avec un module dédié à la programmation en Python, et comporte un module dédié à l’extraction de données textes et au Web Scraping.

Les autres modules de ce cursus couvrent la Dataviz, le Machine Learning, les bases de données Big Data et la Business Intelligence. À l’issue du programme, vous aurez toutes les compétences requises pour exercer le métier de Data Analyst.

Toutes nos formations adoptent une approche Blended Learning combinant coaching individuel sur notre plateforme en ligne et Masterclass. Le programme peut être complété en Formation Continue ou en mode BootCamp intensif.

À la fin du cursus, vous recevrez un certificat délivré par l’Université Paris la Sorbonne dans le cadre de notre partenariat. Parmi les alumnis, 80% ont trouvé un emploi immédiatement après la formation.

Nos programmes sont éligibles au Compte Personnel de Formation pour le financement. N’attendez plus et découvrez la formation Data Analyst de DataScientest !

Vous savez tout sur Beautiful Soup. Découvrez notre dossier complet sur le langage Python, et notre dossier sur le métier de Data Analyst.

pandas-bibliothèque-python
Définitions

Pandas : une bibliothèque Python pour manipuler facilement des données

La bibliothèque Pandas est certainement la plus utile pour les data scientist sous le langage Python. Elle permet d’explorer, transformer, visualiser et comprendre vos données afin d’en retirer le maximum d’informations. Voyons ensemble dans quelles cas l’utiliser et ses fonctions les plus courantes.

Si vous évoluez dans la data science, vous avez sûrement entendu parler de la bibliothèque Pandas. Son nom n’a rien à voir avec ce petit animal d’Asie qui ressemble à un ours. Le nom «Pandas» est une contraction des mots «Panel Data» et «Python Data Analysis». Pandas est donc une bibliothèque open-source proposant différentes fonctions qui permettent la manipulation et l’analyse de données en Python de manière simple et intuitive. C’est donc une bibliothèque polyvalente qui vous permettra de réaliser facilement des analyses de données complexes. La bibliothèque Pandas permet également de créer facilement des graphes, très utiles dans la Data Analyse.

Première force de Pandas, elle se base sur la bibliothèque Numpy

Grand avantage de Pandas, elle se base sur la très populaire bibliothèque Numpy. Cette bibliothèque fournit une pléiade de structures de données et d’opérations qui permettent de traiter des données numériques et des données chronologiques. La bibliothèque Pandas est également importante car ses données sont souvent utilisées comme base pour les fonctions de plotting de Matplotlib, une autre bibliothèque renommée utilisant le langage Python. Les données issues de Pandas sont aussi très utiles dans l’analyse statistique en SciPy, les algorithmes de Machine Learning en Scikit-learn. La bibliothèque Pandas est également très utilisée dans le traitement et l’analyse des données tabulaires (vous pourrez stocker vos données sous le format .csv, .tsv et .xlsx) en entrant des requêtes de type SQL.

Les Séries, les Dataframes et le Panel : les principales structures de données de Python Panda

Si vous utilisez Pandas, vous travaillerez principalement avec deux structures de données, les Séries et les Dataframes.

Les Séries : Une Série est un tableau unidimensionnel étiqueté qui peut contenir des données de n’importe quel type (entier, chaîne, flottant, objets python, etc.). En d’autres mots, les séries sont équivalentes aux colonnes dans un tableau Excel. Les étiquettes des axes sont collectivement appelées index.

Pandas en général est utilisé pour les données de séries chronologiques financières ou des données économiques. Ce langage dispose de nombreux assistants intégrés pour gérer les données financières. Grâce à Numpy, vous pourrez facilement gérer de grands tableaux multidimensionnels pour le calcul scientifique.

tableau-multidimensionnel

La Dataframe : c’est une structure de données bidimensionnelle, c’est-à-dire que les données sont alignées de façon tabulaire en lignes et en colonnes. On peut la comparer en quelque sorte à un classeur Excel. La Dataframe Pandas est particulièrement puissante car elle permet de :

  • charger des données provenant de différentes sources.
  • réaliser facilement des statistiques et calculer la moyenne, la médiane, le maximum et le minimum de chaque colonne et les corrélations entre chacune d’entre elles.
  • nettoyer facilement les données en supprimant les valeurs manquantes ou en filtrant les lignes ou les colonnes selon certains critères.
  • visualiser les données avec l’aide de Matplotlib. Tracez des barres, des lignes, des histogrammes, des bulles, etc.
  • elle permet de stocker les données nettoyées et transformées dans un CSV, TSV ou XLSX.

La Dataframe vous permet également de créer vos propres fonctions Python pour effectuer certaines tâches de calcul et les appliquer aux données de vos Dataframes.

En utilisant les Séries et les Dataframes on peut donc facilement manipuler des données et les représenter.

Enfin, le Panel est un conteneur important pour les données en 3 dimensions. Les noms des 3 axes sont destinés à décrire les opérations impliquant des données de panel et, en particulier, l’analyse économétrique de ces données. L’analyse économétrique est une analyse quantitative, permettant de vérifier l’existence de certaines relations entre des phénomènes économiques et de mesurer concrètement ces relations sur la base d’observations de faits réels. On peut par exemple observer les notes des élèves d’une classe et les comparer sur les devoirs rendus durant les trois trimestres d’une année scolaire.

Pandas, un langage essentiel en Data Science et en Machine Learning

Pandas est un outil particulièrement populaire en science des données il est particulièrement reconnu pour le traitement et l’analyse des données. En effet, Pandas est très utile dans le nettoyage, la transformation, la manipulation et l’analyse de données. En d’autres mots, Pandas aide les Data Scientists à mettre de l’ordre dans leurs données ce qui représente selon certains près de 80% de leur travail.

En ce qui concerne le Machine Learning, Pandas est tout aussi reconnu comme un outil de choix. Ces fonctions permettent notamment d’explorer, de transformer mais aussi de créer une visualisation de la donnée.

En effet, Pandas est souvent accompagné de la bibliothèque Scikit-learn, c’est le package de machine learning de Python. L’utilisation de Scikit-learn intervient dans un deuxième temps après le passage de Pandas dans la première phase d’exploration de la donnée dans un projet de Data Science.

Se former à Pandas avec DataScientest

Code sur écran d'ordinateur
Définitions

Qu’est-ce que la Data Science ? À quoi sert-elle ? Pourquoi est-elle importante aujourd’hui ?

Il y a beaucoup de discussions sur ce qu’est la Data Science ou Science des données. Mais, nous pouvons la résumer par la phrase suivante : « La Data Science est la discipline du 21e siècle qui convertit les données en connaissances utiles ».

La Data Science combine plusieurs domaines, dont les statistiques, les méthodes scientifiques (scientific methods) et l’analyse des données (analyzing data). Elle permet d’extraire de la valeur dans les données, de la collecte de celles-ci (Data Collections) à l’analyse prédictive (Predictive Analytics) en passant par la présentation des résultats (Data Visualization). Le praticien de la Science des données est le Data Scientist qui travaille de près avec d’autres experts du Big Data tels que le Data Analyst et le Data Engineer (Data Science Team).

Qu’est-ce que la Data Science ?

En termes simples, la Science des données consiste à appliquer l’analyse prédictive pour tirer le meilleur parti des informations d’une entreprise. Il ne s’agit pas d’un produit, mais d’un ensemble d’outils (parfois Open source) et de techniques interdisciplinaires intégrant les statistiques (statistical analysis et statistical modeling), l’informatique (computer science) et les technologies de pointe (Artificial Intelligence AI et Machine Learning models) qui aident le Data Scientist à transformer les données en informations stratégiques (actionable insights).

La plupart des entreprises sont aujourd’hui submergées de données et ne les utilisent probablement pas à leur plein potentiel. C’est là qu’intervient le Data Scientist qui met à leur service ses compétences uniques en matière de Science des données pour les aider à transformer les informations en données stratégiques significatives et en véritable avantage concurrentiel (Data Driven Marketing).

En appliquant la Data Science, une organisation peut prendre des décisions en toute confiance et agir en conséquence, car elle travaille avec des faits et la méthode scientifique, plutôt qu’avec des intuitions et des suppositions.

Que font exactement les Data Scientists ?

Statistiques sur papier

Les Data Scientists sont des experts dans trois groupes de disciplines :

          Les statistiques et les mathématiques appliquées

          L’informatique

          L’expertise commerciale

Si les Scientifiques des données peuvent avoir une expertise en physique, en ingénierie, en mathématiques et dans d’autres domaines techniques ou scientifiques, ils doivent également comprendre les objectifs stratégiques de l’entreprise pour laquelle ils travaillent afin d’offrir de réels avantages commerciaux.

Le travail quotidien d’un Data Scientist consiste à :

          Définir un problème ou une opportunité commerciale

          Gérer et à analyser toutes les données pertinentes pour le problème

          Construire et tester des modèles pour fournir des aperçus et des prédictions

          Présenter les résultats aux parties prenantes de l’entreprise

          Écrire du code informatique pour exécuter la solution choisie

Lorsqu’il fait du codage, il applique ses connaissances d’une combinaison de langages utilisés pour la gestion des données et l’analyse prédictive tels que Python, R, SAS et SQL/PostgreSQL.

Enfin, le Data Scientist est également chargé d’analyser et de communiquer les résultats commerciaux réels.

En raison du grand nombre de compétences spécifiques impliquées, les scientifiques de données qualifiés sont difficiles à identifier et à recruter. En outre, leur maintien au sein d’une équipe interne est coûteux pour une organisation.

Pourquoi la Data Science est-elle soudainement si importante ?

La théorie mathématique et statistique qui sous-tend la Data Science est importante depuis des décennies. Mais, les tendances technologiques récentes ont permis la mise en œuvre industrielle de ce qui n’était auparavant que de la théorie. Ces tendances font naître un nouveau niveau de demande pour la Science des données et un niveau d’excitation sans précédent quant à ce qu’elle peut accomplir :

          L’essor du Big Data et de l’Internet des objets (IoT)

La transformation numérique du monde des affaires a donné lieu à une énorme quantité de données (amounts of data) et différents jeux de données (data sets) sur les clients, les concurrents, les tendances du marché et d’autres facteurs clés. Comme ces données proviennent de nombreuses sources et peuvent être non structurées, leur gestion est un défi. Il est difficile, voire impossible pour les groupes internes (analystes d’entreprise traditionnels et équipes informatiques travaillant avec les systèmes existants) de gérer et d’appliquer cette technologie par eux-mêmes.

          La nouvelle accessibilité de l’Intelligence artificielle (IA)

L’Artificial Intelligence (Intelligence artificielle) et la Machine Learning (apprentissage automatique) qui relevaient autrefois de la science-fiction sont désormais monnaie courante et arrivent juste à temps pour relever le défi du Big Data. Le volume, la variété et la vitesse des données ayant augmenté de manière exponentielle, la capacité à détecter des modèles et à faire des prédictions dépasse la capacité de la cognition humaine et des techniques statistiques traditionnelles. Aujourd’hui, l’Intelligence artificielle et l’apprentissage automatique sont nécessaires pour effectuer des tâches robustes de classification, d’analyse et de prédiction des données.

          Les gains énormes en puissance de calcul

La Data Science ne serait pas possible sans les récentes améliorations majeures de la puissance de calcul. Une percée cruciale a été de découvrir que les processeurs informatiques conçus pour restituer des images dans les jeux vidéos seraient également adaptés aux applications d’apprentissage automatique et d’Intelligence artificielle. Ces puces informatiques avancées sont capables de gérer des algorithmes mathématiques et statistiques extrêmement sophistiqués et fournissent des résultats rapides même pour les défis les plus complexes, ce qui les rend idéales pour les applications de science des données.

          Nouvelles techniques de stockage des données, y compris l’informatique dématérialisée

La Data Science dépend d’une capacité accrue à stocker des données de toutes sortes à un coût raisonnable. Les entreprises peuvent désormais stocker raisonnablement des pétaoctets (ou des millions de gigaoctets) de données, qu’elles soient internes ou externes, structurées ou non structurées, grâce à une combinaison hybride de stockage sur site et en nuage.

          Intégration de systèmes

La Data Science met en relation toutes les parties de votre organisation. Une intégration étroite et rapide des systèmes est donc essentielle. Les technologies et systèmes conçus pour déplacer les données en temps réel doivent s’intégrer de manière transparente aux capacités de modélisation automatisée qui exploitent les algorithmes de Machine Learning pour prédire un résultat. Les résultats doivent ensuite être communiqués aux applications en contact avec la clientèle, avec peu ou pas de latence, afin d’en tirer un avantage.

Quels avantages une entreprise peut-elle tirer de la Data Science ?

Réunion business

La Data Science peut offrir un large éventail de résultats financiers et d’avantages stratégiques, en fonction du type d’entreprise, de ses défis spécifiques et de ses objectifs stratégiques.

Par exemple, une société de services publics pourrait optimiser un réseau intelligent pour réduire la consommation d’énergie en s’appuyant sur des modèles d’utilisation et de coûts en temps réel. Un détaillant pourrait appliquer la Science des données aux informations du point de vente pour prédire les achats futurs et sélectionner des produits personnalisés.

Les constructeurs automobiles utilisent activement la Data Science pour recueillir des informations sur la conduite dans le monde réel et développer des systèmes autonomes grâce à la Machine Learning. Les fabricants industriels utilisent la Science des données pour réduire les déchets et augmenter le temps de fonctionnement des équipements.

Dans l’ensemble, la Data Science et l’Intelligence artificielle sont à l’origine des avancées en matière d’analyse de texte, de reconnaissance d’images et de traitement du langage naturel qui stimulent les innovations dans tous les secteurs.

La Science des données peut améliorer de manière significative les performances dans presque tous les domaines d’une entreprise de ces manières, entre autres :

          Optimisation de la chaîne d’approvisionnement

          Augmentation de la rétention des employés

          Compréhension et satisfaction des besoins des clients

          Prévision avec précision des paramètres commerciaux

          Suivi et amélioration de la conception et des performances des produits.

La question n’est pas de savoir ce que la Data Science peut faire. Une question plus juste serait de savoir ce qu’il ne peut pas faire. Une entreprise dispose déjà d’énormes volumes d’informations stockées ainsi que d’un accès à des flux de données externes essentiels. La Science des données peut tirer parti de toutes ces informations pour améliorer pratiquement tous les aspects des performances d’une organisation, y compris ses résultats financiers à long terme.

Quel est l’avenir de la Data Science ?

La Data Science est de plus en plus automatisée et le rythme de l’automatisation va sûrement se poursuivre.

Historiquement, les statisticiens devaient concevoir et ajuster les modèles statistiques manuellement sur une longue période, en utilisant une combinaison d’expertise statistique et de créativité humaine. Mais aujourd’hui, alors que les volumes de données et la complexité des problèmes d’entreprise augmentent, ce type de tâche est si complexe qu’il doit être traité par l’Intelligence artificielle, l’apprentissage automatique et l’automatisation. Cette tendance se poursuivra à mesure que le Big Data prendra de l’ampleur.

L’Intelligence artificielle et l’apprentissage automatique sont souvent associés à l’élimination des travailleurs humains. Mais, ils ne font en réalité qu’accroître l’essor des Citizen Data Scientists, ces professionnels de la Data Science sans formation formelle en mathématiques et statistiques.

En conclusion, rien n’indique que l’automatisation remplacera les spécialistes des données, les ingénieurs de données et les professionnels des DataOps qualifiés. Il faut autant de créativité humaine que possible à différentes étapes pour tirer parti de toute la puissance de l’automatisation et de l’Intelligence artificielle.

jeu-de-données
Définitions

Qu’est-ce qu’un jeu de données ?

Un jeu de données ou data set est un ensemble ou une collection de données. Cet ensemble prend forme dans un tableau avec des lignes et des colonnes. Chaque colonne décrit une variable particulière. Et chaque ligne correspond à un élément donné de l’ensemble de données. Cela fait partie de la gestion des données.

Les ensembles de données décrivent les valeurs de chaque variable pour des quantités inconnues d’un objet ou des valeurs de nombres aléatoires. Les valeurs de cet ensemble sont appelées une donnée. L’ensemble de données se compose de données d’un ou plusieurs éléments correspondant à chaque ligne.

Les différents types de jeux de données

Dans les statistiques, il existe différents types de jeux de données publiés :

  • Jeu de données numériques : un ensemble de chiffres tels que le poids et la taille d’une personne, son âge, le taux de globule rouge dans son sang dans son rapport médical, etc.
  • Jeu de données bivariées : un ensemble de données qui a deux variables comme le rapport poids/puissance d’une voiture par exemple.
  • Jeu de données multivariées : un ensemble de données à plusieurs variables comme le volume des colis qui nécessite trois variables (longueur, largeur et hauteur).
  • Jeu de données catégorielles : un ensemble de données catégorielles qui représentent les caractéristiques d’une personne ou d’un objet.
  • Jeu de données de corrélation : un ensemble de données qui démontrent la corrélation entre plusieurs variables ou données par exemple.

Comment créer un jeu de données ?

Il existe différentes manières de créer des jeux de données . En effet, il existe plusieurs liens menant vers des sources contenant toutes sortes de jeux de données. Certains d’entre eux seront des données générées par des robots. D’autres sont produites par des outils de Business intelligence créés à partir de la Machine Learning. D’autres seront des données collectées via des enquêtes. Il existe également des jeux de données enregistrées à partir d’observations humaines ou extraites des sites Web et des API.

machine-learning-jeu-de-données

Avant de travailler sur un jeu de données, il est important de répondre aux questions suivantes :

  1. D’où viennent les données ?
  2. Comment cet ensemble de données est-il été créé ?

Il ne faut pas se lancer directement dans l’analyse. L’idéal est de prendre le temps de comprendre d’abord les données sur lesquelles travailler.

Les jeux de données publiques pour les projets de visualisation de données

Lorsqu’on recherche un bon jeu de données pour un projet de visualisation de données :

  • Bien ordonné pour ne pas avoir à passer beaucoup de temps à nettoyer les données.
  • Suffisamment nuancé et intéressant pour faire des graphiques.
  • Chaque colonne doit être bien claire de sorte que la visualisation des données soit précise.
  • Pas trop de lignes ou de colonnes pour simplifier le travail.

De nombreux sites d’actualités publient des données ouvertes ou open data. Ils sont d’excellents endroits où trouver de bons jeux de données pour des projets de visualisation de données. Ils respectent la politique de confidentialité des gens qui ont permis de générer ces données. Généralement, ils le nettoient et proposent des graphiques pouvant être reproduits ou améliorés.

data-marketing
Définitions

Qu’est-ce que le data marketing ? Quelle est son importance ?

Avec l’explosion des données clients, notamment des données personnelles, les entreprises cherchent des moyens d’obtenir des informations sur ce qui les entoure. Cela est fait dans le respect de la politique de confidentialité soutenue par le RGPD (règlement général sur la protection des données). Afin d’obtenir une perspective de leur activité sur le marché, elles ont recours à ce que beaucoup ont convenu d’appeler le data marketing : les moyens de connaître et de planifier des actions marketing à travers la mesure et le contrôle des données.

Qu’est-ce que le data marketing ?

Le data marketing est la mesure et l’analyse de toutes les sources d’informations disponibles, y compris sur les réseaux sociaux. Cette approche est ce qui est défini comme étant le data driven marketing. Les entreprises qui l’appliquent peuvent prendre des décisions qui influencent le contrôle et la définition d’une stratégie marketing et commerciale.

On peut dire que le data marketing n’est pas un type de marketing spécifique à l’instar du marketing entrant ou du marketing digital par les moteurs de recherche (SEO, SEM…). Bien que ces types de marketing coexistent, ils sont en grande partie séquentiels. Chacun d’eux fait partie de différentes parties de ce que l’on appelle l’entonnoir de vente marketing.

entonoire-des-ventes-data-marketing

Les bases de données marketing couvrent tous les composants d’une stratégie marketing. Chacun des éléments d’un plan marketing doit pouvoir être mesurable. De par sa nature même, il est une pièce complémentaire à l’ensemble des actions marketing qu’une entreprise mène. Ainsi, il permet de connaître l’utilisation des données qui affectent l’ensemble de sa stratégie marketing, soutenant son activité passée et présente pour établir de nouvelles campagnes publicitaires.

Que faire des données ?

La chose fondamentale dans le data marketing est que les entreprises peuvent étudier les modèles de comportement, la tendance des utilisateurs et leurs habitudes. Une fois que tout cela a été détecté, elles ont la possibilité de définir clairement les actions à appliquer en marketing.

Pour ce faire, elles ont deux solutions. L’une est manuelle où elles évaluent et supervisent toutes les données avec leur équipe. L’autre est d’utiliser l’intelligence artificielle par le biais d’outils d’apprentissage automatique qui se charge de révéler le moment pour réaliser l’action de communication.

En remontant l’histoire d’au moins une dizaine d’années, les données fondamentales pour exercer le contrôle de l’information et la gestion des données ont commencé à être développées dans le marketing. Cela a permis d’avoir le contrôle de toutes les informations qui affectent une entreprise.

Des données importantes et volumineuses sont collectées par les entreprises à chaque seconde. Il est essentiel de les reconnaître, de les stocker, de les collecter, de les classer et de les exporter. Ces techniques doivent aller de pair pour faciliter la compréhension de tous les processus.

Comment appliquer le data marketing ?

Pour mettre en place le data marketing dans une stratégie marketing, toute entreprise doit connaître les points suivants :

  • Volume de données. Toutes les données nécessaires sont tirées du Big Data. Il est essentiel de détecter celles qui affectent ou non le business model.
  • Organisation et hiérarchie. Grâce à un diagramme de flux de travail marketing, on sélection les données. Puis, on les hiérarchise et les organise.
  • Accès rapide. Il faut disposer d’un processus pour pouvoir consulter immédiatement les données lorsque c’est nécessaire.
  • Plusieurs sources. Toute entreprise doit disposer de différentes sources de données du Big Data pour pouvoir les intégrer dans sa stratégie marketing.
  • Procédure de données. Il est important de connaître et de croiser toutes les variables. L’objectif est de pouvoir extraire les informations sans erreur.
  • Visualisation des données. Les informations doivent donner la possibilité de les représenter sous forme de graphiques ou d’images pour les rendre plus compréhensibles.

stratégie-marketing-data-science

En appliquant toutes ces recommandations, une entreprise possède une valeur ajoutée précieuse pour la prise de décision dans sa stratégie marketing. Pour faire simple, il s’agit d’un modèle de gestion intelligent des données.

Quels sont les avantages du data marketing ?

Parmi les avantages, on peut citer les suivants :

  • Facilite la prise de décision.
  • Améliore la capacité stratégique d’une entreprise.
  • Améliore la mesure du risque et la capacité de gestion de l’entreprise.
  • Aide à comprendre l’entreprise et les clients.
  • Donne la possibilité de rechercher de nouvelles opportunités d’affaires.
  • Soutiens la réalisation des objectifs de l’entreprise.
convolutional-neural-network
Définitions

Qu’est-ce qu’un convolutional neural network ?

Le convolutional neural network est une forme spéciale du réseau neuronal artificiel. Il comporte plusieurs couches de convolution et est très bien adapté à l’apprentissage automatique et aux applications avec Intelligence artificielle (IA) dans le domaine de la reconnaissance d’images et de la parole, de la vente et du marketing ciblé et bien plus encore.

Introduction au convolutional neural network

L’appellation convolutional neural network signifie « réseau neuronal convolutif » en Français. L’abréviation est CNN. Il s’agit d’une structure particulière d’un réseau de neurones artificiels spécialement conçu pour l’apprentissage automatique et le traitement d’images ou de données audio.

Dans une certaine mesure, son fonctionnement est calqué sur les processus biologiques derrières les réflexions du cerveau humain. La structure est similaire à celle du cortex visuel d’un cerveau. Le convolutional neural network se compose de plusieurs couches. La formation d’un réseau de neurones convolutifs se déroule généralement de manière supervisée. L’un des fondateurs du réseau de neurones convolutifs est Yann Le Cun.

Mise en place d’un convolutional neural network

Des neurones selon une structure entièrement ou partiellement maillés à plusieurs niveaux composent les réseaux de neurones conventionnels. Ces structures atteignent leurs limites lors du traitement d’images, car il faudrait disposer d’un nombre d’entrées correspondant au nombre de pixels. Le nombre de couches et les connexions entre elles seraient énormes et ne seraient gérables que par des ordinateurs très puissants. Différentes couches composent un réseau neuronal convolutif. Son principe de base est un réseau neuronal à propagation avant ou feedforward neural network partiellement maillé.

couches-cnn

Les couches individuelles de CNN sont :

  • Convolutional layers ou couches de convolution (CONV)
  • Pooling layers ou couches de Pooling (POOL)
  • ReLU layers ou couches d’activation ReLU (Rectified Linear Units)
  • Fully Connected layers ou couches Fully Connected (FC)

La couche de Pooling suit la couche de convolution et cette combinaison peut être présente plusieurs fois l’une derrière l’autre. La couche de Pooling et la couche de convolution étant des sous-réseaux maillés localement, le nombre de connexions dans ces couches reste limité et dans un cadre gérable, même avec de grandes quantités d’entrées. Une couche Fully Connected forme la fin de la structure.

Les tâches individuelles de chacune des couches

La couche de convolution est le plan de pliage réel. Elle est capable de reconnaître et d’extraire des caractéristiques individuelles dans les données d’entrée. Dans le traitement d’image, il peut s’agir de caractéristiques telles que des lignes, des bords ou certaines formes. Les données d’entrée sont traitées sous la forme d’une matrice. Pour ce faire, on utilise des matrices d’une taille définie (largeur x hauteur x canaux).

La couche de Pooling se condense et réduit la résolution des entités reconnues. À cette fin, elle utilise des méthodes telles que la mise en commun maximale ou la mise en commun de la valeur moyenne. La mise en commun élimine les informations inutiles et réduit la quantité de données. Cela ne réduit pas les performances du Machine Learning. Au contraire, la vitesse de calcul augmente en raison du volume de données réduit.

La couche d’activation ReLU permet un entraînement plus rapide et plus efficace en définissant les valeurs négatives sur zéro et en conservant les valeurs positives. Seules les fonctionnalités activées passent à la couche suivante.

La couche Fully Connected forme la fin d’un convolutional neural network CNN. Elle rejoint les séquences répétées des couches de convolution et de Pooling. Toutes les caractéristiques et tous les éléments des couches en amont sont liés à chaque caractéristique de sortie. Les neurones entièrement connectés peuvent être disposés dans plusieurs plans. Le nombre de neurones dépend des classes ou des objets que le réseau de neurones doit distinguer.

La méthode de travail à l’exemple de la reconnaissance d’image

Un CNN peut avoir des dizaines ou des centaines de couches qui apprennent à détecter différentes caractéristiques d’une image. Les filtres sont appliqués à chaque image d’apprentissage à différentes résolutions. La sortie de chaque image alambiquée est utilisée comme entrée pour la couche suivante. Les filtres peuvent aller de caractéristiques très simples telles que la luminosité et les contours à des caractéristiques plus complexes comme des spécificités qui définissent l’objet de manière unique.

Fonctionnalités d’apprentissage

Comme d’autres réseaux de neurones, une couche d’entrée, d’une couche de sortie et de nombreuses couches intermédiaires cachées composent un CNN. Ces couches effectuent des opérations qui modifient les données afin d’apprendre les caractéristiques spécifiques de ces données. Ces opérations se répètent en dizaines ou centaines de couches. Ainsi, chaque couche apprenne à identifier des caractéristiques différentes.

apprentissage-convolutional-neural-network

Poids partagé et valeurs de biais

Comme un réseau de neurones traditionnel, un CNN se compose de neurones avec des poids et des biais. Le modèle apprend ces valeurs au cours du processus de formation et les met continuellement à jour à chaque nouvel exemple de formation. Cependant, dans le cas des CNN, les valeurs des poids et des biais sont les mêmes pour tous les neurones cachés dans une couche spécifique.

Cela signifie que tous les neurones cachés détectent la même caractéristique telle qu’une bordure ou un point dans différentes régions de l’image. Cela permet au réseau de tolérer la traduction d’objets dans une image. Par exemple, un réseau formé à la reconnaissance des voitures pourra le faire partout où la voiture se trouve sur l’image.

Couches de classification

Après avoir appris les fonctionnalités multicouches, l’architecture d’un CNN passe à la classification. L’avant-dernière couche est entièrement connectée et produit un vecteur K-dimensionnel. Ici, K est le nombre de classes que le réseau pourra prédire. Ce vecteur contient les probabilités pour chaque classe de toute image classée. La couche finale de l’architecture CNN utilise une couche de classification pour fournir la sortie de classification.

Avantages d’un CNN dans le domaine de la reconnaissance d’images

Comparé aux réseaux neuronaux conventionnels, le CNN offre de nombreux avantages :

  • Il convient aux applications d’apprentissage automatique et d’Intelligence artificielle avec de grandes quantités de données d’entrée telles que la reconnaissance d’images.
  • Le réseau fonctionne de manière robuste et est insensible à la distorsion ou à d’autres changements optiques.
  • Il peut traiter des images enregistrées dans différentes conditions d’éclairage et dans différentes perspectives. Les caractéristiques typiques d’une image sont ainsi facilement identifiées.
  • Il nécessite beaucoup moins d’espace de stockage que les réseaux de neurones entièrement maillés. Le CNN est divisé en plusieurs couches locales partiellement maillées. Les couches de convolution réduisent considérablement les besoins de stockage.
  • Le temps de formation d’un CNN est également considérablement réduit. Grâce à l’utilisation de processeurs graphiques modernes, les CNN peuvent être formés de manière très efficace.
  • Il est la technologie de pointe pour le Deep Learning et la classification dans la reconnaissance d’images (image recognition).

Application d’un CNN dans le domaine du marketing

Le CNN est présent dans divers domaines depuis ces dernières années. La biologie l’utilise principalement pour en savoir plus sur le cerveau. En médecine, il fonctionne parfaitement pour la prédiction de tumeurs ou d’anomalies ainsi que pour l’élaboration de diagnostics complexes et de traitements à suivre en fonction des symptômes. Un autre domaine dans lequel il est couramment utilisé est celui de l’environnement. Il permet d’analyser les tendances et les modèles ou les prévisions météorologiques. Dans le domaine de la finance, il est couramment utilisé dans tout ce qui concerne la prévision de l’évolution des prix, l’évaluation ou l’identification du risque de contrefaçon.

Un CNN a de ce fait une application directe dans de nombreux domaines. Et pour faire face à l’accroissement de la quantité de données disponibles, il est également utilisé dans le marketing. En effet, dans le domaine des affaires et plus particulièrement en marketing, il a plusieurs usages :

  • Prédiction des ventes
  • Identification des modèles de comportement
  • Reconnaissance des caractères écrits
  • Prédiction du comportement des consommateurs
  • Personnalisation des stratégies marketing
  • Création et compréhension des segments d’acheteurs plus sophistiqués
  • Automatisation des activités marketing
  • Création de contenu

 crm-convolutional-neural-network

De toutes ses utilisations, la plus grande se trouve dans l’analyse prédictive. Le CNN aide les spécialistes du marketing à faire des prédictions sur le résultat d’une campagne, en reconnaissant les tendances des campagnes précédentes.

Actuellement, avec l’apparition du Big Data, cette technologie est vraiment utile pour le marketing. Les entreprises ont accès à beaucoup données. Grâce au travail de leur équipe experte dans la data science (data scientist, data analyst, data engineer), le développement de modèles prédictifs est beaucoup plus simple et précis. Les spécialistes du marketing pourront ainsi mieux ciblés les prospects alignés sur leurs objectifs.

metier-data-engineer
Définitions

Qu’est-ce qu’un data engineer et que fait-il ?

Le métier de data engineer est l’une des spécialisations qui se généralise dans l’écosystème Big Data. Selon un rapport de LinkedIn sur les offres d’emploi émergentes de 2020, le poste de data engineer fait partie des 15 professions les plus importantes des cinq dernières années. Il se place aux côtés des autres nouveaux métiers tels que les experts de la data science et de l’Intelligence Artificielle (IA) ainsi que des ingénieurs en fiabilité de site.

Cependant, beaucoup de gens se demandent encore s’ils seraient à l’aise de travailler en tant que data engineer. Est-ce un cheminement de carrière intéressant ? Nous apportons des éléments de réponse dans cet article en définissant succinctement ce qu’il est, ce qu’il fait ainsi que les connaissances et compétences qu’il doit avoir.

Qu’est-ce qu’un data engineer ?

L’ingénieur de données est le professionnel chargé de l’acquisition, du stockage, de la transformation et de la gestion de données dans une organisation. Ce professionnel assume la configuration de l’infrastructure technologique nécessaire pour que les volumes de données de l’entreprise deviennent une matière première accessible pour d’autres spécialistes du Big Data tels que les data analysts et les data scientists.

Les data engineers travaillent sur la conception de pipelines de données, sur la création et la maintenance de l’architecture de ces données. Pour faire simple, le data engineering consiste à veiller à ce que les travaux ultérieurs d’exploitation, d’analyse et d’interprétation des informations puissent être effectués sans incident.

Que fait un data engineer au quotidien ?

Le quotidien d’un data engineer consiste à travailler avec des outils ETL (Extract – Transform – Load). Grâce à une technologie d’intelligence artificielle basée sur des algorithmes de Machine learning, il développe des tâches d’extraction, de transformation et de chargement de données. Ensuite, il les déplace entre différents environnements et les nettoie de toute erreur pour qu’elles arrivent normalisées et structurées aux mains du data scientist et data analyst.

taches-data-engineer

En ce sens, le rôle du data engineer est comparable à celui d’un plombier. Il consiste à mettre en place et à entretenir le réseau de canalisations à travers lequel les données vont passer. Ainsi, il garantit le bon fonctionnement de l’ensemble de l’organisation.

1.      Extraction

Dans la première étape du processus ETL, le data engineer prend les données de différents endroits et étudie l’incorporation de nouvelles sources dans le flux de données de l’entreprise. Ces données sont présentées dans différents formats et intègrent des variables très diverses. Ensuite, elles vont vers des data lakes ou un autre type de référentiel où le stockage de données est fait de manière brute et facilement accessible pour toute utilisation future.

2.      Transformation

Dans la deuxième étape, le data engineer procède au nettoyage des données. Il élimine les doublons et corrige les erreurs. Puis, il les classe pour les transformer en un ensemble homogène.

3.      Chargement

Dans la dernière étape, le data engineer charge les données vers leur destination. Il peut s’agir des propres serveurs de l’entreprise ou du Cloud. À part cela, il doit également veiller sur un point important de cette étape finale : la sécurité des données. En effet, il doit garantir que les informations soient correctement protégées des cyberattaques et des accès non autorisés.

Quelles connaissances doit avoir un data engineer ?

Tout d’abord, il doit avoir une connaissance courante des bases de données relationnelles et du langage de requête SQL. Cela lui permet de connaître les techniques de modélisation de données les plus utilisées et de savoir comment accéder aux données sources lorsqu’elles sont disponibles.

Il doit aussi connaître les techniques de nettoyage, de synthèse et de validation des données. Ainsi, les informations parviennent à leurs utilisateurs de manière adaptée pour leur exploitation correcte.

Il doit également savoir utiliser de manière optimale les moteurs de traitement de Big Data tels que Spark ou Flink.

Quelles technologies sont essentielles pour un data engineer ?

Les technologies utilisées par le data engineer comprennent les bases de données non relationnelles et les méthodes de modélisation des données. Parmi ces technologies, on peut citer comme exemple HBASE, Cassandra ou MongoDb. Il est aussi intéressant qu’il sache utiliser les moteurs d’indexation tels que SolR et ElasticSearch.

elasticsearch-data-engineering

Dans les systèmes de collecte de données d’aujourd’hui, il est très important pour ce professionnel de maîtriser les technologies qui lui permettent d’y accéder en temps réel. On parle généralement de technologies de streaming comme Flume, Kafka ou Spark Structured Streaming.

Son système d’exploitation habituel est Linux où il doit maîtriser parfaitement l’environnement. Côté langages de programmation, les plus communs sont Java, Scala ou Kotlin pour le développement de processus de traitement de données. Concernant Python, il sert pour l’analyse et la préparation préalable des données.

Par ailleurs, il est de plus en plus important qu’il ait une connaissance du développement d’applications natives pour le Cloud. Aujourd’hui, c’est un mouvement que de nombreuses entreprises suivent. Connaître les différences entre le développement d’applications locales et basées sur le Cloud est nécessaire. La principale raison est la transition en toute sécurité.

Enfin, l’ingénieur de données doit pouvoir évoluer en toute confiance dans un grand nombre de domaines différents de l’informatique. Il ne doit jamais cesser d’apprendre et d’ajouter de nouveaux outils à ses bagages professionnels.

data management
Définitions

Qu’est-ce que le data management ?

Le concept de data management ou gestion des données comprend une liste complète de sujets associés et connexes qui couvrent l’ensemble du processus de gestion et d’exploitation des données. Dans cette liste, nous pouvons trouver des termes tels que l’architecture de données, la modélisation de données, l’intégration de données, la qualité des données, le Big Data  la confidentialité et la sécurité des données. Il s’agit d’une partie du Business intelligence permettant, au même titre que les autres éléments clé de la data science, de mettre en place des outils optimisant la prise de décisions.

Qu’est-ce que le data management ?

On entend souvent parler de la gouvernance des données ou data governance. Mais, il ne s’agit que d’un élément clé du data management. Et la gestion des données est un ensemble complet de pratiques, de concepts, de procédures et de processus. C’est également un large éventail de systèmes complémentaires qui permettent à une organisation de prendre le contrôle de ses ressources d’informations, de la collecte à la sécurisation des données.

Le data management en tant que pratique générale concerne le cycle de vie complet de données de référence depuis leur point de création d’origine jusqu’à leur mise hors service finale.

Concepts autour du data management

Beaucoup de questions sont posées autour du sujet « data management » :

  • Est-il facile d’accéder, de nettoyer, d’intégrer et de stocker les données personnelles des gens ?
  • Quel type de données les acteurs au sein de l’entreprise utilisent-ils ?
  • L’entreprise dispose-t-elle d’un système efficace pour une analyse de données au fur et à mesure qu’elles circulent en interne ?

taches-data-management

Ces questions invitent à comprendre certains concepts permettant de connaître en profondeur ce qu’est réellement la gestion des données :

1.      Accès aux données

Ce terme fait référence à la capacité d’accéder et de récupérer des informations où qu’elles soient. Certaines technologies peuvent rendre cette étape aussi simple et efficace que possible afin que les entreprises puissent utiliser les données et ne pas seulement les trouver.

2.      Qualité des données

Il faut s’assurer que les données soient exactes et utilisables aux fins prévues. Cela commence à partir du moment où elles sont trouvées et se poursuit via divers points d’intégration avec d’autres données.

3.      Intégration de données

Ce terme définit les étapes pour combiner différents types de données. Les outils d’intégration de données permettent de concevoir et d’automatiser les étapes.

4.      Contrôle des données

Il s’agit d’un ensemble continu de règles et de décisions permettant de gérer les données d’une entreprise afin de garantir que la stratégie sur ces données est alignée celle de l’entreprise.

5.      Master data management (MDM)

Unification et gestion de toutes les données communes et essentielles à tous les domaines d’une organisation. Ces données de base sont généralement gérées à partir d’un seul emplacement ou concentrateur.

6.      Transmission de données

Implique l’analyse des données au fur et à mesure qu’elles se déplacent en appliquant une logique aux données : identification des modèles dans les données et filtration pour des utilisations multiples à mesure qu’elles circulent dans l’organisation.

Avantages apportés par le data management

Pour une entreprise, le data management est la première étape dans la gestion d’un volume de données à la fois structurées et non structurées. Mais, ce n’est que grâce aux meilleures pratiques qu’elle peut exploiter la puissance de ces données. C’est également l’unique solution pour obtenir les informations dont elle a besoin pour rendre les données utiles.

En fait, le data management permet aux organisations d’utiliser l’analyse des données à des fins de marketing et de relation client :

  • Personnaliser l’expérience client
  • Ajouter de la valeur aux interactions avec les clients
  • Identifier en temps réel les causes des échecs marketing
  • Récolter les revenus associés au marketing axé sur les données
  • Améliorer l’engagement client
  • Augmenter la fidélité des clients

CRM-Data-Management

Bonnes pratiques dans le data management

Dans toute opération de data management, il faut savoir gérer les données et acquérir les connaissances nécessaires pour prendre de bonnes décisions. Pour ce faire, il faut commencer par se poser une question d’ordre commerciale et acquérir les données nécessaires pour y répondre.

Les entreprises collectent de grandes quantités d’informations à partir de diverses sources. Elles utilisent ensuite les meilleures pratiques tout au long du processus de stockage et de gestion, de nettoyage et d’extraction des données. Enfin, elles procèdent à l’analyse et la visualisation des données pour éclairer leurs décisions commerciales.

Il est important de noter que les meilleures pratiques de gestion des données se traduisent par des améliorations analytiques en même temps. En gérant et en préparant correctement les données pour l’analyse, les entreprises optimisent leur Big Data.

Certaines des meilleures pratiques de data management que les entreprises cherchent désespérément à mettre en œuvre sont :

  • La simplification de l’accès aux données traditionnelles et émergentes.
  • Le nettoyage des données pour insuffler de la qualité dans les processus métier existants
  • Le façonnage des données à l’aide de techniques de manipulation flexibles