All Posts By

adriano

Formations

Formation Power BI : les différents types de cours

Microsoft Power BI est une famille d’outils de Business Intelligence. À partir des données d’une entreprise, il permet de générer des rapports et donc des informations d’aide à la décision.

Le terme « famille d’outils » est ici employé, car les éléments qui composent Power BI sont nombreux. Les principaux sont :

          Power Bi Desktop: une application de bureau qui peut être téléchargée gratuitement sur PC. C’est l’outil principal pour le traitement des données et la création de rapports.

          Power bi Service : l’environnement Cloud où les rapports créés avec Power Bi Desktop sont publiés, analysés et partagés. On s’y connecte via un compte Microsoft.

          Power bi Mobile : les rapports peuvent également être analysés via une application pour appareils mobiles (Smartphones et tablettes).

Les utilisateurs de Power BI comprennent à quel point cet outil est incontournable. C’est la raison pour laquelle des cours spécifiques à destination de spécialistes des données et des TIC sont proposés par différents établissements et centres de formation.

Power BI pour les développeurs

Bien que Power BI soit un logiciel gratuit, en tant que service (SaaS), il permet d’analyser des données et de partager des connaissances. Les tableaux de bord Power BI offrent une vue à 360 degrés des métriques les plus importantes en un seul endroit, avec des mises à jour en temps réel et une accessibilité sur tous les appareils.

Une formation Power BI à destination des développeurs consiste à apprendre à utiliser l’outil pour développer des solutions logicielles personnalisées pour les plateformes Power BI et Azure. Au terme de la formation, les étudiants auront acquis les compétences suivantes :

          Configurer des tableaux de bord en temps réel

          Créer des visualisations personnalisées

          Intégrer des analyses riches dans des applications existantes

          Intégrer des rapports interactifs et visuels dans des applications existantes

          Accéder aux données depuis une application

Création de tableaux de bord à l’aide de Microsoft Power BI

Cette formation couvre à la fois Power BI sur le web et Power BI Desktop. Elle s’adresse généralement aux chefs d’entreprise, aux développeurs, aux analystes, aux chefs de projet et aux chefs d’équipe. L’objectif est que les étudiants acquièrent une compréhension de base des sujets ci-dessous, ainsi qu’une capacité à utiliser et à mettre en œuvre les concepts appris.

          Power BI

          Power BI Desktop

          Utilisation de feuilles de calcul CSV, TXT et Excel

          Connexion aux bases de données

          Fusionner, regrouper, résumer et calculer des données

          Création de rapports

Conception du tableau de bord Power BI

Power BI est l’un des outils de visualisation de données les plus populaires et un outil de Business Intelligence. Il propose une collection de connecteurs de bases de données, d’applications et de services logiciels qui sont utilisés pour obtenir des informations de différentes sources de données, les transformer et produire des rapports. Il permet également de les publier pour pouvoir y accéder depuis des appareils mobiles. Mais, cela nécessite la conception de tableaux de bord.

Une formation axée sur la création de tableaux de bord s’adresse aux chefs d’entreprise, aux analystes commerciaux, aux Data Analysts, aux développeurs et aux chefs d’équipe qui souhaitent concevoir un tableau de bord Power BI parfait. À l’issue de cette formation, les participants pourront :

          Concevoir des tableaux de bord beaux et efficaces en suivant les règles critiques

          Choisir les bons graphiques en fonction du type de données à afficher

Data Analytics Process, solutions Cloud et solutions Power BI

Cette formation consiste à avoir une prise en main des solutions Cloud disponibles, des processus d’analyse de données nécessaires pour travailler avec des données dans le Cloud et des outils Power BI pour analyser les données.

L’objectif de la formation est d’apporter aux participants la capacité de :

          Installer et configurer Power BI

          Évaluer les différentes solutions de données offertes par les fournisseurs de cloud tels qu’Azure

          Acquérir une compréhension des différentes structures, approches de modélisation et conceptions de Data Warehouses utilisées pour stocker, gérer et accéder au Big Data.

          Appliquer des outils et des techniques pour nettoyer les données en vue de l’analyse.

          Construire des solutions de reporting et d’analyse basées sur des données sur site et dans le Cloud.

          Intégrer des solutions d’analyse de données à un Data Warehouse

          Atténuer les risques de sécurité des données et assurer la confidentialité des données

Excel vers Power BI

Exporter un fichier Excel vers Power BI est une connaissance essentielle aux Data Analysts qui souhaitent apprendre des techniques pour préparer des données dans Excel, puis les visualiser dans Power BI. Ainsi, ils pourront :

          Comprendre les principes de l’analyse des données, les objectifs de l’analyse des données et les approches de l’analyse des données

          Utiliser les formules DAX dans Power BI pour des calculs complexes

          Mettre en place des visualisations et des graphiques pour des cas d’analyse particuliers

BeautifulSoup
Définitions

Beautiful Soup : tout savoir sur la bibliothèque Python de Data Scraping

Le web est une véritable mine de données informatiques. Ces données peuvent être exploitées, analysées pour une infinité de cas d’usage et d’applications. On peut les utiliser pour nourrir des systèmes de Machine Learning, d’intelligence artificielle, ou tout simplement pour mettre en lumière des tendances et des phénomènes.

S’il est possible de collecter ces données manuellement afin de constituer de vastes datasets, cette tâche représente un travail de titan. Afin de l’automatiser, on utilise le Web Scraping.

Qu’est-ce que le Web Scraping ?

Le Web Scraping est un processus qui consiste à assembler des informations en provenance d’internet, à l’aide de divers outils et frameworks. Cette définition est très large, et même le fait de copier / coller les paroles d’une chanson peut être considéré comme une forme de Web Scraping.

Toutefois, le terme de Web Scraping désigne généralement un processus impliquant l’automatisation. Les volumes massifs de données sont collectés automatiquement, afin de constituer de vastes datasets.

Certains sites web s’opposent à la collecte de leurs données par des scrapers automatiques. En règle générale, le scraping à des fins éducatives est plus toléré que pour un usage commercial. Il est important de consulter les conditions d’utilisation d’un site avant d’initier un projet.

À quoi sert le Web Scraping ?

Le Web Scraping permet d’agréger des informations plus rapidement qu’avec une collecte manuelle. Il n’est plus nécessaire de passer de longues heures à cliquer, à dérouler l’écran ou à rechercher les données.

Cette méthode se révèle particulièrement utile pour amasser de très larges volumes de données en provenance de sites web régulièrement mis à jour avec du nouveau contenu. Le scraping manuel est une tâche chronophage et rébarbative.

À l’échelle individuelle, le Web Scraping peut se révéler utile pour automatiser certaines tâches. Par exemple, un demandeur d’emploi peut utiliser Python pour automatiser ses recherches d’offres. Quelques lignes de code permettent d’enregistrer automatiquement les nouvelles annonces publiées sur des plateformes comme Indeed ou Monster, afin de ne plus avoir à visiter ces sites web quotidiennement.

web-scraping-beautiful-soup

Le Web Scraping peut aussi être utilisé pour surveiller des changements de prix, comparer des prix, ou surveiller la concurrence en collectant des sites web en provenance de leurs sites web. Les possibilités sont nombreuses et diverses.

Toutefois, cette méthode se révèle surtout pertinente pour les projets Big Data nécessitant d’immenses volumes de données. Par exemple, l’entreprise ClearView AI a utilisé le Web Scraping sur les réseaux sociaux afin de constituer une immense base de données de photos de profils pour son logiciel de reconnaissance faciale.

Le Web Scraping est presque aussi vieux qu’internet. Alors que le World Wide Web fut lancé en 1989, le World Wide Web Wanderer a été créé quatre ans plus tard. Il s’agit du premier robot web créé par Matthew Gray du MIT. Son objectif était de mesurer la taille du WWW.

Les défis du Web Scraping

Depuis sa création, internet a beaucoup évolué. On y trouve une large variété de types et formats de données, et le web scraping comporte donc plusieurs difficultés.

Le premier défi à relever est celui de la variété. Chaque site web est différent et unique, et nécessite donc un traitement spécifique pour l’extraction d’informations pertinentes.

En outre, les sites web évoluent constamment. Un script de Web Scraping peut donc fonctionner parfaitement la première fois, mais se heurter ensuite à des dysfonctionnements en cas de mise à jour.

Dès que la structure d’un site change, le scraper peut ne plus être capable de naviguer la ” sitemap ” correctement ou de trouver des informations pertinentes. Heureusement, la plupart des changements apportés aux sites web sont minimes et incrémentaux, et un scraper peut donc être mis à jour avec de simples ajustements.

Néanmoins, face à la nature dynamique d’internet, les scrapers nécessitent généralement une maintenance constante. Il est possible d’utiliser l’intégration continue pour lancer périodiquement des tests de scraping et s’assurer que les scripts fonctionnent correctement.

Les APIs en guise d’alternative au Web Scraping

Certains sites web proposent des APIs (interface de programmation d’application) permettant d’accéder à leurs données de manière prédéfinie. Ces interfaces permettent d’accéder aux données directement en utilisant des formats comme JSON et XML, plutôt que de s’en remettre au parsing de HTML.

L’utilisation d’une API est en général un processus plus stable que l’agrégation de données via le Web Scraping. Pour cause, les développeurs créent des APIs conçues pour être consommées par des programmes plutôt que par des yeux humains.

API-beautiful-soup

La présentation front-end d’une site web peut souvent changer, mais un tel changement dans le design d’un site web n’affecte pas la structure de son API. Cette structure est généralement plutôt permanente, ce qui en fait une source plus fiable de données.

Néanmoins, les APIs aussi peuvent changer. Les défis liés à la variété et à la durabilité s’appliquent donc aussi bien aux APIs qu’aux sites web. Il est également plus difficile d’inspecter la structure d’une API par soi-même si la documentation fournie n’est pas suffisamment complète.

Qu’est-ce que Beautiful Soup ?

Beautiful Soup est une bibliothèque Python utilisée pour le Web Scraping. Elle permet d’extraire des données en provenance de fichiers XML ou HTML. Cette bibliothèque crée un arbre de parsing à partir du code source de la page, pouvant être utilisé pour extraire les données de manière hiérarchique et lisible.

À l’origine, Beautiful Soup fut introduite en mai 2006 par Leonard Richardson qui continue à contribuer au projet. En outre, le projet est soutenu par Tidelift et son outil de maintenance open-source proposé par abonnement payant.

En plus de ses hautes performances, Beautiful Soup apporte plusieurs avantages. Cet outil permet de parcourir les pages de la même manière qu’un navigateur, et enjolive le code source.

Comment apprendre à utiliser Beautiful Soup et Python ?

Afin d’apprendre à utiliser Beautiful Soup, vous pouvez choisir DataScientest. Leur formation Data Analyst commence avec un module dédié à la programmation en Python, et comporte un module dédié à l’extraction de données textes et au Web Scraping.

Les autres modules de ce cursus couvrent la Dataviz, le Machine Learning, les bases de données Big Data et la Business Intelligence. À l’issue du programme, vous aurez toutes les compétences requises pour exercer le métier de Data Analyst.

Toutes nos formations adoptent une approche Blended Learning combinant coaching individuel sur notre plateforme en ligne et Masterclass. Le programme peut être complété en Formation Continue ou en mode BootCamp intensif.

À la fin du cursus, vous recevrez un certificat délivré par l’Université Paris la Sorbonne dans le cadre de notre partenariat. Parmi les alumnis, 80% ont trouvé un emploi immédiatement après la formation.

Nos programmes sont éligibles au Compte Personnel de Formation pour le financement. N’attendez plus et découvrez la formation Data Analyst de DataScientest !

Vous savez tout sur Beautiful Soup. Découvrez notre dossier complet sur le langage Python, et notre dossier sur le métier de Data Analyst.

devops
Formations

Quelle sont les spécificités d’une formation DevOps ?

Avec le progrès de la méthode Agile, la démarche DevOps est devenue un mode d’organisation du travail particulièrement populaire dans le milieu du développement logiciel. Dans les faits, elle consiste à réunir les services de développement et des opérations dans une unique suite de déploiements continus. ​

Ainsi le développement et la mise en place sont réalisés de manière simultanée et cela permet de pallier les faiblesses de communication qui pouvaient exister entre ces deux pôles, les retours sont plus rapides et le développement est par conséquent plus efficace puisqu’il s’inscrit dans un unique flux de travail. Ce mode d’organisation possède de nombreux avantages aussi bien du point de vue de la qualité que de la rapidité. Si vous souhaitez en savoir plus sur le DevOps, vous pouvez consulter notre article détaillé sur le sujet.

De son côté, DataScientest est un organisme spécialisé dans la formation dans les métiers et les compétences liés au développement et à la data depuis 2016. Nos formations ont été co-construites avec les groupes avec lesquels nous travaillons maintenant depuis plusieurs années et qui continuent aujourd’hui à nous faire confiance. C’est pourquoi nous avons mis notre savoir-faire dans la formation au service de la conception d’une formation DevOps.

Quels sont les prérequis pour pouvoir accéder à une telle formation ?

Le métier de DevOps est exigeant aussi bien techniquement que théoriquement. Bien que cela ne soit pas nécessairement obligatoire, il demeure néanmoins très intéressant avant de suivre une telle formation de maîtriser les bases d’un ou plusieurs langages de programmation tels que Javascript, Go ou encore Python. Pour ce qui est du niveau mathématique attendu, un niveau équivalent à celui d’un Bac +2. Ces prérequis peuvent vous permettre d’être très à l’aise lors du suivi de votre formation, mais leur absence ne doit pas pour autant vous dissuader de vous lancer dans votre projet de formation. Il est en effet toujours possible de rattraper le niveau requis !  DataScientest propose par exemple une formation Python qui peut être votre première approche avec un langage de programmation.​

python-programing

Quel est le contenu d’une formation DevOps ?

​Le DevOps doit posséder un solide bagage technique et maîtriser un vaste ensemble d’outils. Pour ce qui est des langages de programmation qu’il doit maîtriser, on retrouve évidemment les grands classiques du développement web comme HTML, CSS, PHP ou encore Ruby. Néanmoins d’autres langages sont également nécessaires notamment pour ce qui touche au développement d’applications tels que Python ou Java. Pour ce qui est des outils du DevOps, ce sont par exemple les outils d’intégration comme Jenkins ou alors les différents CMS comme Drupal.

Parallèlement à ses compétences techniques, le DevOps doit également posséder un ensemble de qualités qui lui seront d’une grande aide lors de l’exercice de son activité. Il lui est par exemple impératif de faire preuve d’une grande rigueur et d’une bonne capacité d’autonomie afin de faire cohabiter ses deux activités. Par ailleurs, le DevOps doit également être passionné par son domaine d’activité puisque ce domaine évolue rapidement, il lui incombe donc de mettre à jour régulièrement ses connaissances. Pour cela, Data Scientist publie régulièrement des articles sur son blog afin que vous puissiez rester au courant des dernières actualités du milieu du développement et de la data.

Suivre une formation Data Scientist

Quels sont les objectifs d’une formation DevOps ?

Le poste de DevOps présente de multiples intérêts. Tout d’abord, ses missions sont variées et cette formation ouvre donc les portes sur une profession très peu répétitive. Parmi ses principales activités, on trouve la mise en place d’applications mais également l’instauration de tests puis la surveillance du bon fonctionnement des applications précédemment implantées.

D’autre part, une telle formation ouvre les portes à un marché de l’emploi très favorable puisque les profils de DevOps sont aujourd’hui particulièrement sollicités tout simplement car le volume de données à traiter continuent de croître et car la transformation digitale des entreprises s’accélère. Certains enjeux au cœur du métier de DevOps comme la sécurité des données deviennent donc cruciaux pour tous les champs d’activité.

transformation-digitale

Les perspectives d’évolution pour un DevOps sont multiples et permettent de prétendre à terme à des postes comme lead tech, CTO ou encore ingénieur réseau et structure. Pour ce qui est de la rémunération, un DevOps peut prétendre à environ 36 000€ annuel en salaire avec une possibilité d’augmentation rapide jusqu’à 60k€-90k€ annuel. Il s’agit d’un des métiers les plus demandés en France ce qui exerce une pression à la hausse sur les salaires.

Quel est l’avantage de réaliser une formation DevOps au sein de DataScientest ?

Notre organisme propose une formation DevOps dont le support de cours est conçu par nos experts directement en interne. Ce sont ces mêmes professeurs qui forment notre équipe pédagogique et qui vont mettre en  place un accompagnement personnalisé tout au long de la formation. Parallèlement à un enseignement de qualité, DataScientest s’engage également à fonder un véritable accompagnement pour ses apprenants. À partir du milieu des formations et jusqu’à l’emploi, nos apprenants sont accompagnés par notre pôle carrière qui peut vous aider à mettre en forme votre CV, mais également à préparer vos entretiens. DataScientest est aujourd’hui le leader de la formation data en B2B et nous disposons de nombreux partenaires que nous pouvons mettre en relation avec nos apprenants. Par ailleurs, nos apprenants représentent désormais une communauté de plus de 3000 alumni et nous instaurons en véritable esprit de promotion à l’aide de différents ateliers tout au long de la formation.

Découvrir les formations data de DataScientest

pandas-bibliothèque-python
Définitions

Pandas : une bibliothèque Python pour manipuler facilement des données

La bibliothèque Pandas est certainement la plus utile pour les data scientist sous le langage Python. Elle permet d’explorer, transformer, visualiser et comprendre vos données afin d’en retirer le maximum d’informations. Voyons ensemble dans quelles cas l’utiliser et ses fonctions les plus courantes.

Si vous évoluez dans la data science, vous avez sûrement entendu parler de la bibliothèque Pandas. Son nom n’a rien à voir avec ce petit animal d’Asie qui ressemble à un ours. Le nom «Pandas» est une contraction des mots «Panel Data» et «Python Data Analysis». Pandas est donc une bibliothèque open-source proposant différentes fonctions qui permettent la manipulation et l’analyse de données en Python de manière simple et intuitive. C’est donc une bibliothèque polyvalente qui vous permettra de réaliser facilement des analyses de données complexes. La bibliothèque Pandas permet également de créer facilement des graphes, très utiles dans la Data Analyse.

Première force de Pandas, elle se base sur la bibliothèque Numpy

Grand avantage de Pandas, elle se base sur la très populaire bibliothèque Numpy. Cette bibliothèque fournit une pléiade de structures de données et d’opérations qui permettent de traiter des données numériques et des données chronologiques. La bibliothèque Pandas est également importante car ses données sont souvent utilisées comme base pour les fonctions de plotting de Matplotlib, une autre bibliothèque renommée utilisant le langage Python. Les données issues de Pandas sont aussi très utiles dans l’analyse statistique en SciPy, les algorithmes de Machine Learning en Scikit-learn. La bibliothèque Pandas est également très utilisée dans le traitement et l’analyse des données tabulaires (vous pourrez stocker vos données sous le format .csv, .tsv et .xlsx) en entrant des requêtes de type SQL.

Les Séries, les Dataframes et le Panel : les principales structures de données de Python Panda

Si vous utilisez Pandas, vous travaillerez principalement avec deux structures de données, les Séries et les Dataframes.

Les Séries : Une Série est un tableau unidimensionnel étiqueté qui peut contenir des données de n’importe quel type (entier, chaîne, flottant, objets python, etc.). En d’autres mots, les séries sont équivalentes aux colonnes dans un tableau Excel. Les étiquettes des axes sont collectivement appelées index.

Pandas en général est utilisé pour les données de séries chronologiques financières ou des données économiques. Ce langage dispose de nombreux assistants intégrés pour gérer les données financières. Grâce à Numpy, vous pourrez facilement gérer de grands tableaux multidimensionnels pour le calcul scientifique.

tableau-multidimensionnel

La Dataframe : c’est une structure de données bidimensionnelle, c’est-à-dire que les données sont alignées de façon tabulaire en lignes et en colonnes. On peut la comparer en quelque sorte à un classeur Excel. La Dataframe Pandas est particulièrement puissante car elle permet de :

  • charger des données provenant de différentes sources.
  • réaliser facilement des statistiques et calculer la moyenne, la médiane, le maximum et le minimum de chaque colonne et les corrélations entre chacune d’entre elles.
  • nettoyer facilement les données en supprimant les valeurs manquantes ou en filtrant les lignes ou les colonnes selon certains critères.
  • visualiser les données avec l’aide de Matplotlib. Tracez des barres, des lignes, des histogrammes, des bulles, etc.
  • elle permet de stocker les données nettoyées et transformées dans un CSV, TSV ou XLSX.

La Dataframe vous permet également de créer vos propres fonctions Python pour effectuer certaines tâches de calcul et les appliquer aux données de vos Dataframes.

En utilisant les Séries et les Dataframes on peut donc facilement manipuler des données et les représenter.

Enfin, le Panel est un conteneur important pour les données en 3 dimensions. Les noms des 3 axes sont destinés à décrire les opérations impliquant des données de panel et, en particulier, l’analyse économétrique de ces données. L’analyse économétrique est une analyse quantitative, permettant de vérifier l’existence de certaines relations entre des phénomènes économiques et de mesurer concrètement ces relations sur la base d’observations de faits réels. On peut par exemple observer les notes des élèves d’une classe et les comparer sur les devoirs rendus durant les trois trimestres d’une année scolaire.

Pandas, un langage essentiel en Data Science et en Machine Learning

Pandas est un outil particulièrement populaire en science des données il est particulièrement reconnu pour le traitement et l’analyse des données. En effet, Pandas est très utile dans le nettoyage, la transformation, la manipulation et l’analyse de données. En d’autres mots, Pandas aide les Data Scientists à mettre de l’ordre dans leurs données ce qui représente selon certains près de 80% de leur travail.

En ce qui concerne le Machine Learning, Pandas est tout aussi reconnu comme un outil de choix. Ces fonctions permettent notamment d’explorer, de transformer mais aussi de créer une visualisation de la donnée.

En effet, Pandas est souvent accompagné de la bibliothèque Scikit-learn, c’est le package de machine learning de Python. L’utilisation de Scikit-learn intervient dans un deuxième temps après le passage de Pandas dans la première phase d’exploration de la donnée dans un projet de Data Science.

Se former à Panda avec DataScientest

formation-data-engineer.jpg
Formations

Qu’attendre d’une formation data engineer ?

Le data engineer est l’une des professions les plus demandées ces dernières années. Connaissant une grande croissance, il s’agit de l’une des professions les plus rémunératrices au même titre que le métier de data scientist (data science, Machine Learning…). L’augmentation massive des données générées et des technologies qui ont émergé autour d’elle en sont les principales causes. Alors, que ce soit via une formation data engineer à distance ou dans une école d’informatique, qu’acquiert-on en apprenant à devenir un expert du data engineering ?

Des notions de base

Parmi les notions de base que les futurs data engineers devraient acquérir se trouve Linux. Ce système d’exploitation est le plus utilisé dans les déploiements Cloud et Big Data. Un data engineer doit au moins être à l’aise avec ces technologies. Ainsi, il peut éditer facilement des fichiers, exécuter des commandes et naviguer dans le système.

Il doit aussi maîtriser un langage de programmation comme Python. Ce point inclut la possibilité d’interagir avec les API et d’autres sources de données de manière simple et directe.

Par définition, le Big Data se déroule généralement dans des systèmes distribués. Ces derniers font partie des connaissances fondamentales qu’un bon ingénieur de données doit acquérir. Ces systèmes présentent de nombreuses particularités concernant la réplication des données, la cohérence, la tolérance aux pannes, le partitionnement et la concurrence. À ce stade, la formation comprend des technologies telles que HDFS, Hadoop ou Spark.

hadoop-data-engineer

Des compétences de base

Technologies et services Cloud

La demande pour ces technologies ne cesse de croître. Ainsi, se lancer dans des projets de migration vers le Cloud est devenu un impératif pour les entreprises. Un bon data engineer doit connaître et avoir de l’expérience dans l’utilisation des services Cloud, leurs avantages, leurs inconvénients et leur application dans les projets Big Data. Il doit au moins être à l’aise avec une plate-forme comme Microsoft Azure ou AWS. De plus, il doit connaître les bonnes pratiques en matière de sécurité et de virtualisation des données. Il ne faut pas oublier que ces technologies sont là pour durer. Par conséquent, suivre une formation qui les inclut dans le programme est toujours une bonne idée.

Bases de données

Les data engineers doivent connaître le fonctionnement et l’utilisation des bases de données, les différences entre les bases de données relationnelles et NoSQL. Le langage de base pour interagir avec ces bases de données est SQL. En ce sens, un futur data engineer doit se familiariser avec les requêtes d’écriture et de lecture ainsi que la manipulation de données. En outre, il doit comprendre la différence entre les types de bases de données NoSQL et les cas d’utilisation pour chacun d’eux.

Pipelines de données

L’un des principaux rôles des ingénieurs de données est de créer des pipelines de données. Pour ce faire, il utilise des technologies ETL (Extraction-Transform-Load) et des cadres d’orchestration. Le data engineer est formé pour connaître ou se sentir à l’aise avec certaines des plus connues telles que Apache NiFi ou Airflow.

processus-etl-data-enginering

Des compétences avancées

Il existe d’autres compétences et connaissances acquises lors d’une formation data engineer en plus des compétences de base. Elles ajoutent une grande valeur aux compétences professionnelles.

  • Systèmes de mise en file d’attente de messagerie comme Kafka ou RabbitMQ : les data engineers doivent comprendre les avantages du déploiement de ces technologies et leur architecture.
  • Langage de programmation orienté objet comme Python : ces langages sont très utiles dans le secteur du Big Data. La plupart des frameworks et outils open source sont développés avec des langages JVM. Ils seront particulièrement utiles pour développer des intégrations de technologies, résoudre les erreurs et comprendre les journaux.
  • Traitement de flux avec des outils de traitement de streaming comme Flink, Kafka Streams ou Spark Streaming : une formation data engineer doit inclure l’apprentissage de ces outils. Les entreprises doivent aujourd’hui mettre en place des projets avec des exigences en temps, avec de faibles latences de traitement. En ce sens, la formation à ces technologies est très intéressante avec de nombreux cas d’utilisation à exploiter.
formation-python
Dossier

Formation Python : pourquoi et comment ?

Pourquoi apprendre Python ?  C’est l’une des premières questions que les étudiants se posent dans de nombreux centres académiques et formations Python. La réponse coule d’elle-même pour de nombreuses raisons. Python est un langage de programmation très populaire. Il a été une pièce maîtresse dans de grands projets et surtout dans l’introduction de pratiques innovantes lors de la programmation.

L’une des forces de ce langage de programmation est la large communauté de développeurs qui l’entoure. Tous ces professionnels cherchent à contribuer, partager et créer des logiciels évolutifs en communauté. En ce sens, il y a une sorte d’ambiance Python. Cela attire les programmeurs, les chercheurs et les professionnels de tous horizons qui cherchent à améliorer leurs performances de travail.

Python est un langage de programmation totalement gratuit et interprétatif qui est assez polyvalent. Il permet de mettre en place des projets variés allant du développement d’un site Web aux applications pour les systèmes d’exploitation.

La simplicité de la ligne de commande lors de la programmation est remarquable. C’est un fait connu de tous ceux qui l’utilisent. Et si vous n’êtes pas encore convaincu de suivre une formation Python, nous allons vous donner ici 5 raisons d’apprendre ce langage de programmation orienté objet.

Pourquoi suivre une formation Python ?

Python est un langage de programmation qui a beaucoup de qualité. C’est pour cette raison qu’il est actuellement très utilisé dans plusieurs domaines.

Open source

Si vous avez déjà programmé dans un autre langage, vous avez probablement remarqué qu’il s’agit de langages propriétaires avec quelques défauts dans la partie support. Et c’est encore pire pour les entreprises détenant des droits et faisant face par la suite à des problèmes juridiques.

Python est complètement open source. Il est accessible au public et tout le monde peut le modifier à sa guise en ajoutant ou en mettant de côté une partie du code toujours dans le but d’améliorer le travail de programmation.

accessibilité-python

En effet, Python a une licence connue sous le nom de PSFL ou Python Software Foundation License. Elle est compatible avec la licence publique générale GNU. De cette manière, il permet l’utilisation du code dans tout type de projet sans violations possibles du travail du programmeur et de ses actifs.

Multi-paradigme et multiplateforme

Initialement, Python a été conçu pour Unix. Mais, aujourd’hui, il peut fonctionner avec n’importe quel autre système. Il n’y a aucun risque qu’il y ait des problèmes d’implémentation tant que les utilisateurs recevront le Compiler approprié qui peut être configuré à partir du site officiel de Python.

Lorsqu’un langage est multi-paradigme, il permet non seulement de créer du développement Web, mais aussi de créer des applications ou des programmes sous d’autres critères de code structurel. Ainsi, Python est pratique pour développer des sous-paradigmes de programmation avancés contrairement à d’autres formes de programmation conventionnelles que l’on trouve notamment avec les langages plus anciens.

Python rassemble le meilleur de tous les langages en un seul. Il permet de développer des jeux, des applications, des sites Web et tout ce dont un programmeur est capable de faire, quelle que soit la complexité du projet.

C’est ainsi que les grandes entreprises utilisent Python au quotidien, notamment celles qui doivent interpréter des volumes massifs de données grâce à la data science et le Machine Learning.

Python est également présenté comme multiplateforme. En effet, il peut fonctionner sur n’importe quel système d’exploitation et a même été adapté à d’autres gadgets avec beaucoup de succès.

Polyvalence lors de la programmation

Avec Python, tout est possible. On peut créer n’importe quoi, du site Web à un programme ou une application pour effectuer une tâche telle que le calcul de valeurs statistiques ou la résolution de mathématiques complexes.

Syntaxe parfaite simple

La syntaxe Python est conviviale et cet élément met certainement en évidence la programmation. Pour les novices en programmation, il sera très facile d’effectuer le processus d’écriture du code.

Lorsqu’on parle de syntaxe, nous nous référons aux règles de protocole qui font partie d’un processus. D’une certaine manière, il s’agit des règles de grammaire et de style qui rendent un message lisible et compréhensible. On peut dire que le code est l’âme, mais la syntaxe donne forme à cette âme et lui donne le plus nécessaire pour avoir une certaine valeur.

syntaxe-Python

En d’autres termes, la syntaxe de Python facilite fortement la formation à ce langage de programmation, d’où d’ailleurs cet engouement vers ce langage de programmation. Pour les personnes qui ne font que programmer, elle est très facile à comprendre par rapport à d’autres langages de programmation qui sont beaucoup plus compliqués.

Python rend la programmation beaucoup plus facile. Dans de nombreuses situations, lors d’un projet mené en équipe, c’est généralement la faiblesse des autres langages de programmation. Mais c’est tout le contraire avec Python, car le code est beaucoup plus compréhensible.

De quoi se compose une formation Python ?

Une formation Python avec un programme et une qualité pédagogique similaire peut durer 12 mois au maximum. Elle nécessite bien évidemment des supports de cours, que ce soit une formation à distance, initiale ou en continue. Les sessions de formation peuvent comprendre plusieurs modules avec des exercices pratiques ou travaux pratiques en programmation Python (conception de base de données, création des applications avec des interfaces graphiques, développement web…), des pré-requis pour maîtriser ce langage de programmation. Mais avant tout, il faut savoir l’utiliser selon les deux modes de programmation proposés par Python.

Programmation structurée

Python a plusieurs paradigmes de programmation et l’un d’eux est la programmation structurée. Ce paradigme est basé sur 3 sous-programmes :

  • La séquence qui se produit naturellement dans le langage. C’est l’ordre d’exécution dans lequel les instructions sont écrites.
  • La sélection qui est l’exécution de phrases selon une condition.
  • L’itération (cycle ou boucle) qui est l’exécution d’énoncés répétitifs ou non selon une condition vraie.

Programmation orientée objet

Le deuxième paradigme enseigné lors d’une formation Python est la programmation orientée objet, mais uniquement lorsque le premier paradigme est maitrisé. Ici, les étudiants apprennent à fusionner les deux paradigmes pour travailler avec des classes en Python. Ce paradigme est basé sur :

  • L’héritage simple et multiple qui consiste à faire hériter à une classe enfant les méthodes et les attributs d’une classe parent.
  • Le polymorphisme et l’encapsulation où le premier envoie les mêmes messages à différents objets et le second change l’état d’un objet uniquement à travers les opérations définies pour cet objet.
  • La modularité qui consiste à subdiviser une application en modules indépendants.
jeu-de-données
Définitions

Qu’est-ce qu’un jeu de données ?

Un jeu de données ou data set est un ensemble ou une collection de données. Cet ensemble prend forme dans un tableau avec des lignes et des colonnes. Chaque colonne décrit une variable particulière. Et chaque ligne correspond à un élément donné de l’ensemble de données. Cela fait partie de la gestion des données.

Les ensembles de données décrivent les valeurs de chaque variable pour des quantités inconnues d’un objet ou des valeurs de nombres aléatoires. Les valeurs de cet ensemble sont appelées une donnée. L’ensemble de données se compose de données d’un ou plusieurs éléments correspondant à chaque ligne.

Les différents types de jeux de données

Dans les statistiques, il existe différents types de jeux de données publiés :

  • Jeu de données numériques : un ensemble de chiffres tels que le poids et la taille d’une personne, son âge, le taux de globule rouge dans son sang dans son rapport médical, etc.
  • Jeu de données bivariées : un ensemble de données qui a deux variables comme le rapport poids/puissance d’une voiture par exemple.
  • Jeu de données multivariées : un ensemble de données à plusieurs variables comme le volume des colis qui nécessite trois variables (longueur, largeur et hauteur).
  • Jeu de données catégorielles : un ensemble de données catégorielles qui représentent les caractéristiques d’une personne ou d’un objet.
  • Jeu de données de corrélation : un ensemble de données qui démontrent la corrélation entre plusieurs variables ou données par exemple.

Comment créer un jeu de données ?

Il existe différentes manières de créer des jeux de données . En effet, il existe plusieurs liens menant vers des sources contenant toutes sortes de jeux de données. Certains d’entre eux seront des données générées par des robots. D’autres sont produites par des outils de Business intelligence créés à partir de la Machine Learning. D’autres seront des données collectées via des enquêtes. Il existe également des jeux de données enregistrées à partir d’observations humaines ou extraites des sites Web et des API.

machine-learning-jeu-de-données

Avant de travailler sur un jeu de données, il est important de répondre aux questions suivantes :

  1. D’où viennent les données ?
  2. Comment cet ensemble de données est-il été créé ?

Il ne faut pas se lancer directement dans l’analyse. L’idéal est de prendre le temps de comprendre d’abord les données sur lesquelles travailler.

Les jeux de données publiques pour les projets de visualisation de données

Lorsqu’on recherche un bon jeu de données pour un projet de visualisation de données :

  • Bien ordonné pour ne pas avoir à passer beaucoup de temps à nettoyer les données.
  • Suffisamment nuancé et intéressant pour faire des graphiques.
  • Chaque colonne doit être bien claire de sorte que la visualisation des données soit précise.
  • Pas trop de lignes ou de colonnes pour simplifier le travail.

De nombreux sites d’actualités publient des données ouvertes ou open data. Ils sont d’excellents endroits où trouver de bons jeux de données pour des projets de visualisation de données. Ils respectent la politique de confidentialité des gens qui ont permis de générer ces données. Généralement, ils le nettoient et proposent des graphiques pouvant être reproduits ou améliorés.

data-marketing
Définitions

Qu’est-ce que le data marketing ? Quelle est son importance ?

Avec l’explosion des données clients, notamment des données personnelles, les entreprises cherchent des moyens d’obtenir des informations sur ce qui les entoure. Cela est fait dans le respect de la politique de confidentialité soutenue par le RGPD (règlement général sur la protection des données). Afin d’obtenir une perspective de leur activité sur le marché, elles ont recours à ce que beaucoup ont convenu d’appeler le data marketing : les moyens de connaître et de planifier des actions marketing à travers la mesure et le contrôle des données.

Qu’est-ce que le data marketing ?

Le data marketing est la mesure et l’analyse de toutes les sources d’informations disponibles, y compris sur les réseaux sociaux. Cette approche est ce qui est défini comme étant le data driven marketing. Les entreprises qui l’appliquent peuvent prendre des décisions qui influencent le contrôle et la définition d’une stratégie marketing et commerciale.

On peut dire que le data marketing n’est pas un type de marketing spécifique à l’instar du marketing entrant ou du marketing digital par les moteurs de recherche (SEO, SEM…). Bien que ces types de marketing coexistent, ils sont en grande partie séquentiels. Chacun d’eux fait partie de différentes parties de ce que l’on appelle l’entonnoir de vente marketing.

entonoire-des-ventes-data-marketing

Les bases de données marketing couvrent tous les composants d’une stratégie marketing. Chacun des éléments d’un plan marketing doit pouvoir être mesurable. De par sa nature même, il est une pièce complémentaire à l’ensemble des actions marketing qu’une entreprise mène. Ainsi, il permet de connaître l’utilisation des données qui affectent l’ensemble de sa stratégie marketing, soutenant son activité passée et présente pour établir de nouvelles campagnes publicitaires.

Que faire des données ?

La chose fondamentale dans le data marketing est que les entreprises peuvent étudier les modèles de comportement, la tendance des utilisateurs et leurs habitudes. Une fois que tout cela a été détecté, elles ont la possibilité de définir clairement les actions à appliquer en marketing.

Pour ce faire, elles ont deux solutions. L’une est manuelle où elles évaluent et supervisent toutes les données avec leur équipe. L’autre est d’utiliser l’intelligence artificielle par le biais d’outils d’apprentissage automatique qui se charge de révéler le moment pour réaliser l’action de communication.

En remontant l’histoire d’au moins une dizaine d’années, les données fondamentales pour exercer le contrôle de l’information et la gestion des données ont commencé à être développées dans le marketing. Cela a permis d’avoir le contrôle de toutes les informations qui affectent une entreprise.

Des données importantes et volumineuses sont collectées par les entreprises à chaque seconde. Il est essentiel de les reconnaître, de les stocker, de les collecter, de les classer et de les exporter. Ces techniques doivent aller de pair pour faciliter la compréhension de tous les processus.

Comment appliquer le data marketing ?

Pour mettre en place le data marketing dans une stratégie marketing, toute entreprise doit connaître les points suivants :

  • Volume de données. Toutes les données nécessaires sont tirées du Big Data. Il est essentiel de détecter celles qui affectent ou non le business model.
  • Organisation et hiérarchie. Grâce à un diagramme de flux de travail marketing, on sélection les données. Puis, on les hiérarchise et les organise.
  • Accès rapide. Il faut disposer d’un processus pour pouvoir consulter immédiatement les données lorsque c’est nécessaire.
  • Plusieurs sources. Toute entreprise doit disposer de différentes sources de données du Big Data pour pouvoir les intégrer dans sa stratégie marketing.
  • Procédure de données. Il est important de connaître et de croiser toutes les variables. L’objectif est de pouvoir extraire les informations sans erreur.
  • Visualisation des données. Les informations doivent donner la possibilité de les représenter sous forme de graphiques ou d’images pour les rendre plus compréhensibles.

stratégie-marketing-data-science

En appliquant toutes ces recommandations, une entreprise possède une valeur ajoutée précieuse pour la prise de décision dans sa stratégie marketing. Pour faire simple, il s’agit d’un modèle de gestion intelligent des données.

Quels sont les avantages du data marketing ?

Parmi les avantages, on peut citer les suivants :

  • Facilite la prise de décision.
  • Améliore la capacité stratégique d’une entreprise.
  • Améliore la mesure du risque et la capacité de gestion de l’entreprise.
  • Aide à comprendre l’entreprise et les clients.
  • Donne la possibilité de rechercher de nouvelles opportunités d’affaires.
  • Soutiens la réalisation des objectifs de l’entreprise.
métier-big-data
Dossier

Métier Big Data : les profils très recherchés par les entreprises

Il est de plus en plus fréquent de trouver des offres d’emploi qui recherchent des spécialistes de la gestion de gros volumes de données ou plus précisément des experts en Big Data. Considéré comme l’un des métiers les plus prometteurs du 21e siècle, l’expert Big Data se présente comme la nouvelle spécialité la plus demandée par les entreprises pour transformer les données en connaissances. Dans cet article, nous apportons des explications sur les emplois les plus demandés dans le Big Data.

Pourquoi les entreprises recherchent-elles différentes spécialités dans le Big Data ?

Il existe de nombreux emplois dont les entreprises n’ont pas besoin pour plusieurs raisons. Cependant, il y en a de nouveaux qui surgissent en raison des besoins exigés par la transformation numérique.

Dans un environnement qui évolue si rapidement sur le plan technologique, les entreprises recherchent de plus en plus des spécialistes capables de travailler avec les gros volumes de données stockés chaque jour. Ces données, dûment analysées et traitées sont en réalité des informations très utiles et représentent de nouvelles opportunités commerciales, des aides dans les prises de décision, une connaissance plus précise du public cible, etc.

Cependant, il y a un manque de personnes spécialisées dans le Big Data sur le marché actuel du travail. Néanmoins, ceux qui sont formés dans ce domaine ont devant eux une opportunité unique et un net avantage dans le domaine professionnel.

opportunité-travail-big-data

Les métiers Big Data les plus recherchés

En raison de l’arrivée d’un besoin total de transformation numérique au sein des entreprises, celles qui n’ont pas encore fait la transition font face aux nouveaux besoins technologiques du Big Data :

  • Collecte de données
  • Gestion des données
  • Analyse de données
  • Traitement de données

Une fois qu’elles sont converties en informations, elles peuvent les utiliser pour comprendre le comportement de leurs clients et prendre des décisions stratégiques.

La demande pour les différents profils de métier Big Data s’est également reflétée dans les classements des organismes de recrutement où des postes tels que le data scientist ou le data analyst figurent parmi les dix les plus demandés par les entreprises.

Mais, tous les emplois dans le Big Data n’ont pas le même profil ou n’effectuent pas les mêmes fonctions. Il existe différentes spécialités dans le metier Big Data. Ci-dessous, nous avons listé les spécialités du métier Big Data les plus demandés par les entreprises.

1.      Chief data officer (CDO)

Il est responsable de toutes les équipes spécialisées dans le Big Data au sein de l’organisation. Sa fonction est de diriger et de gérer les données et les analyses associées à l’activité. Il doit également veiller à ce que l’entreprise soit axée sur les données. En d’autres termes, il est chargé d’exploiter les actifs de données pour créer de la valeur commerciale.

chief-data-officer-metier-big-data

Le rôle d’un CDO combine l’obligation de rendre compte et la responsabilité de la confidentialité et de la protection des informations, de la qualité des données et de la gestion des données. Il s’agit du directeur numérique de l’entreprise. C’est un personnage clé, car ce professionnel est le directeur numérique de l’entreprise.

2.      Data Scientist

Sa fonction consiste à traduire de grands volumes de données et à les convertir en informations utiles pour l’entreprise. Il/elle a des connaissances en mathématiques, statistiques et informatiques (Intelligence artificielle, Machine Learning, etc.). Il a également une vision de l’entreprise et des compétences en communication pour pouvoir faire part des résultats de son travail au reste de l’organisation.

Le data scientist est un autre profil qui est très demandé dans tous les domaines du numérique. Il n’est donc pas surprenant que les entreprises aient du mal à trouver ces professionnels spécialisés sur le marché du travail. Ils ont pour rôle d’apporter des réponses fiables aux problèmes quotidiens. Par exemple, savoir quel est le meilleur moment pour acheter un billet d’avion.

3.      Data analyst

Comme son poste l’indique, il participe à l’analyse des données et recueille les besoins des clients pour les présenter au data scientist. Il est également en charge de :

  • L’extraction, le traitement et le regroupement des données
  • L’analyse de ces groupes de données
  • La production de rapports détaillés

L’analyse des données est devenue une pratique incontournable dans les stratégies marketing des entreprises. Pour cette raison, elle nécessite des professionnels capables non seulement d’extraire ces données, mais de les interpréter.

4.      Data engineer

La tâche de l’ingénieur des données consiste à distribuer les données de manière accessible aux Data Scientists. Son profil est plus spécialisé dans la gestion de bases de données et dans les systèmes de traitement et de programmation. Nous pourrions définir un data engineer comme un professionnel axé sur la conception, le développement et la maintenance de systèmes de traitement de données dans le cadre d’un projet Big Data.

Son objectif est de créer et de maintenir les architectures et les structures technologiques nécessaires au traitement, à l’assimilation et au déploiement à grande échelle d’applications gourmandes en données.

En bref, il conçoit et construit des pipelines de données brutes. À partir de là, il collecte, transforme et prépare les données pour l’analyse.

5.      Data manager

Le rôle principal d’un data manager est de superviser les différents systèmes de données d’une entreprise. Il est chargé d’organiser, de stocker et d’analyser les données de la manière la plus efficace possible.

Le gestionnaire de données possède des connaissances en informatique et 1 à 4 ans d’expérience dans sa spécialité. Il se démarque dans le monde des chiffres, des enregistrements et des données brutes. Mais, il doit également être familiarisé avec l’ensemble du système de données. Parallèlement, il doit avoir un esprit logique et analytique avec de bonnes compétences en résolution de problèmes.

convolutional-neural-network
Définitions

Qu’est-ce qu’un convolutional neural network ?

Le convolutional neural network est une forme spéciale du réseau neuronal artificiel. Il comporte plusieurs couches de convolution et est très bien adapté à l’apprentissage automatique et aux applications avec Intelligence artificielle (IA) dans le domaine de la reconnaissance d’images et de la parole, de la vente et du marketing ciblé et bien plus encore.

Introduction au convolutional neural network

L’appellation convolutional neural network signifie « réseau neuronal convolutif » en Français. L’abréviation est CNN. Il s’agit d’une structure particulière d’un réseau de neurones artificiels spécialement conçu pour l’apprentissage automatique et le traitement d’images ou de données audio.

Dans une certaine mesure, son fonctionnement est calqué sur les processus biologiques derrières les réflexions du cerveau humain. La structure est similaire à celle du cortex visuel d’un cerveau. Le convolutional neural network se compose de plusieurs couches. La formation d’un réseau de neurones convolutifs se déroule généralement de manière supervisée. L’un des fondateurs du réseau de neurones convolutifs est Yann Le Cun.

Mise en place d’un convolutional neural network

Des neurones selon une structure entièrement ou partiellement maillés à plusieurs niveaux composent les réseaux de neurones conventionnels. Ces structures atteignent leurs limites lors du traitement d’images, car il faudrait disposer d’un nombre d’entrées correspondant au nombre de pixels. Le nombre de couches et les connexions entre elles seraient énormes et ne seraient gérables que par des ordinateurs très puissants. Différentes couches composent un réseau neuronal convolutif. Son principe de base est un réseau neuronal à propagation avant ou feedforward neural network partiellement maillé.

couches-cnn

Les couches individuelles de CNN sont :

  • Convolutional layers ou couches de convolution (CONV)
  • Pooling layers ou couches de Pooling (POOL)
  • ReLU layers ou couches d’activation ReLU (Rectified Linear Units)
  • Fully Connected layers ou couches Fully Connected (FC)

La couche de Pooling suit la couche de convolution et cette combinaison peut être présente plusieurs fois l’une derrière l’autre. La couche de Pooling et la couche de convolution étant des sous-réseaux maillés localement, le nombre de connexions dans ces couches reste limité et dans un cadre gérable, même avec de grandes quantités d’entrées. Une couche Fully Connected forme la fin de la structure.

Les tâches individuelles de chacune des couches

La couche de convolution est le plan de pliage réel. Elle est capable de reconnaître et d’extraire des caractéristiques individuelles dans les données d’entrée. Dans le traitement d’image, il peut s’agir de caractéristiques telles que des lignes, des bords ou certaines formes. Les données d’entrée sont traitées sous la forme d’une matrice. Pour ce faire, on utilise des matrices d’une taille définie (largeur x hauteur x canaux).

La couche de Pooling se condense et réduit la résolution des entités reconnues. À cette fin, elle utilise des méthodes telles que la mise en commun maximale ou la mise en commun de la valeur moyenne. La mise en commun élimine les informations inutiles et réduit la quantité de données. Cela ne réduit pas les performances du Machine Learning. Au contraire, la vitesse de calcul augmente en raison du volume de données réduit.

La couche d’activation ReLU permet un entraînement plus rapide et plus efficace en définissant les valeurs négatives sur zéro et en conservant les valeurs positives. Seules les fonctionnalités activées passent à la couche suivante.

La couche Fully Connected forme la fin d’un convolutional neural network CNN. Elle rejoint les séquences répétées des couches de convolution et de Pooling. Toutes les caractéristiques et tous les éléments des couches en amont sont liés à chaque caractéristique de sortie. Les neurones entièrement connectés peuvent être disposés dans plusieurs plans. Le nombre de neurones dépend des classes ou des objets que le réseau de neurones doit distinguer.

La méthode de travail à l’exemple de la reconnaissance d’image

Un CNN peut avoir des dizaines ou des centaines de couches qui apprennent à détecter différentes caractéristiques d’une image. Les filtres sont appliqués à chaque image d’apprentissage à différentes résolutions. La sortie de chaque image alambiquée est utilisée comme entrée pour la couche suivante. Les filtres peuvent aller de caractéristiques très simples telles que la luminosité et les contours à des caractéristiques plus complexes comme des spécificités qui définissent l’objet de manière unique.

Fonctionnalités d’apprentissage

Comme d’autres réseaux de neurones, une couche d’entrée, d’une couche de sortie et de nombreuses couches intermédiaires cachées composent un CNN. Ces couches effectuent des opérations qui modifient les données afin d’apprendre les caractéristiques spécifiques de ces données. Ces opérations se répètent en dizaines ou centaines de couches. Ainsi, chaque couche apprenne à identifier des caractéristiques différentes.

apprentissage-convolutional-neural-network

Poids partagé et valeurs de biais

Comme un réseau de neurones traditionnel, un CNN se compose de neurones avec des poids et des biais. Le modèle apprend ces valeurs au cours du processus de formation et les met continuellement à jour à chaque nouvel exemple de formation. Cependant, dans le cas des CNN, les valeurs des poids et des biais sont les mêmes pour tous les neurones cachés dans une couche spécifique.

Cela signifie que tous les neurones cachés détectent la même caractéristique telle qu’une bordure ou un point dans différentes régions de l’image. Cela permet au réseau de tolérer la traduction d’objets dans une image. Par exemple, un réseau formé à la reconnaissance des voitures pourra le faire partout où la voiture se trouve sur l’image.

Couches de classification

Après avoir appris les fonctionnalités multicouches, l’architecture d’un CNN passe à la classification. L’avant-dernière couche est entièrement connectée et produit un vecteur K-dimensionnel. Ici, K est le nombre de classes que le réseau pourra prédire. Ce vecteur contient les probabilités pour chaque classe de toute image classée. La couche finale de l’architecture CNN utilise une couche de classification pour fournir la sortie de classification.

Avantages d’un CNN dans le domaine de la reconnaissance d’images

Comparé aux réseaux neuronaux conventionnels, le CNN offre de nombreux avantages :

  • Il convient aux applications d’apprentissage automatique et d’Intelligence artificielle avec de grandes quantités de données d’entrée telles que la reconnaissance d’images.
  • Le réseau fonctionne de manière robuste et est insensible à la distorsion ou à d’autres changements optiques.
  • Il peut traiter des images enregistrées dans différentes conditions d’éclairage et dans différentes perspectives. Les caractéristiques typiques d’une image sont ainsi facilement identifiées.
  • Il nécessite beaucoup moins d’espace de stockage que les réseaux de neurones entièrement maillés. Le CNN est divisé en plusieurs couches locales partiellement maillées. Les couches de convolution réduisent considérablement les besoins de stockage.
  • Le temps de formation d’un CNN est également considérablement réduit. Grâce à l’utilisation de processeurs graphiques modernes, les CNN peuvent être formés de manière très efficace.
  • Il est la technologie de pointe pour le Deep Learning et la classification dans la reconnaissance d’images (image recognition).

Application d’un CNN dans le domaine du marketing

Le CNN est présent dans divers domaines depuis ces dernières années. La biologie l’utilise principalement pour en savoir plus sur le cerveau. En médecine, il fonctionne parfaitement pour la prédiction de tumeurs ou d’anomalies ainsi que pour l’élaboration de diagnostics complexes et de traitements à suivre en fonction des symptômes. Un autre domaine dans lequel il est couramment utilisé est celui de l’environnement. Il permet d’analyser les tendances et les modèles ou les prévisions météorologiques. Dans le domaine de la finance, il est couramment utilisé dans tout ce qui concerne la prévision de l’évolution des prix, l’évaluation ou l’identification du risque de contrefaçon.

Un CNN a de ce fait une application directe dans de nombreux domaines. Et pour faire face à l’accroissement de la quantité de données disponibles, il est également utilisé dans le marketing. En effet, dans le domaine des affaires et plus particulièrement en marketing, il a plusieurs usages :

  • Prédiction des ventes
  • Identification des modèles de comportement
  • Reconnaissance des caractères écrits
  • Prédiction du comportement des consommateurs
  • Personnalisation des stratégies marketing
  • Création et compréhension des segments d’acheteurs plus sophistiqués
  • Automatisation des activités marketing
  • Création de contenu

 crm-convolutional-neural-network

De toutes ses utilisations, la plus grande se trouve dans l’analyse prédictive. Le CNN aide les spécialistes du marketing à faire des prédictions sur le résultat d’une campagne, en reconnaissant les tendances des campagnes précédentes.

Actuellement, avec l’apparition du Big Data, cette technologie est vraiment utile pour le marketing. Les entreprises ont accès à beaucoup données. Grâce au travail de leur équipe experte dans la data science (data scientist, data analyst, data engineer), le développement de modèles prédictifs est beaucoup plus simple et précis. Les spécialistes du marketing pourront ainsi mieux ciblés les prospects alignés sur leurs objectifs.