Search results for

Visualisation de données

Dossier

SHAP, pour l’interprétabilité des modèles d’IA

La capacité à comprendre et à expliquer les décisions prises par les modèles d’Intelligence Artificielle ou de Machine Learning est devenue primordiale. Ces technologies sophistiquées s’intègrent de plus en plus dans des domaines critiques tels que la santé, la finance ou encore la sécurité. Les solutions comme SHAP (SHapley Additive exPlanations) connaissent un essor fulgurant.

SHAP s’inspire des concepts de la théorie des jeux coopératifs, et offre une méthode rigoureuse et intuitive pour décomposer les prédictions des modèles en contributions individuelles de chaque caractéristiques.

Fondements théoriques de SHAP

Il est nécessaire d’analyser un tant soi peu les racines théoriques de SHAP afin de comprendre sa valeur ajoutée mais également la raison qui le rend efficace pour interpréter des modèles parfois complexes.

Théorie des jeux coopératifs

Cette théorie, une branche de la théorie des jeux, se concentre sur l’analyse des stratégies pour les groupes d’agents qui peuvent former des coalitions et partager des récompenses. Au cœur de cette théorie se trouve la notion de “valeur équitable”, une façon de distribuer les gains (ou les pertes) parmi les participants d’une manière qui reflète leur contribution individuelle. C’est dans ce contexte que la Valeur de Shapley.

La Valeur de Shapley

Il s’agit d’un concept mathématique, introduit par Lloyd Shapley en 1953, servant à déterminer la part juste de chaque joueur dans un jeu coopératif. Elle est calculée en considérant toutes les permutations possibles de joueurs et en évaluant l’impact marginal de chaque joueur lorsqu’il rejoint une coalition. En d’autres termes, elle mesure la contribution moyenne d’un joueur à la coalition, en tenant compte de toutes les combinaisons possibles dans lesquelles ce joueur pourrait contribuer.

Lien avec SHAP

Dans le contexte du machine learning, SHAP utilise la Valeur de Shapley pour attribuer une « valeur d’importance » à chaque caractéristique d’un modèle prédictif. Chaque caractéristique d’une instance de données est considérée comme un « joueur » dans un jeu coopératif où le « gain » est la prédiction du modèle.

Implications de la Valeur de Shapley en IA

Cette valeur représente une avancée significative dans l’interprétabilité des modèles d’IA. Elle permet non seulement de quantifier l’impact de chaque caractéristique de manière juste et cohérente, mais offre aussi une transparence qui aide à construire la confiance dans les modèles d’apprentissage automatique.

Comment fonctionne SHAP ?

Au cœur de SHAP se trouve l’idée de décomposer une prédiction spécifique en un ensemble de valeurs attribuées à chaque caractéristique d’entrée. Ces valeurs sont calculées de manière à refléter l’impact de chaque caractéristique sur l’écart entre la prédiction actuelle et la moyenne des prédictions sur l’ensemble des données. Pour y parvenir, SHAP explore toutes les combinaisons possibles de caractéristiques et leurs contributions à la prédiction. Ce processus utilise la Valeur de Shapley, que nous avons abordée précédemment, pour assurer une répartition équitable et précise de l’impact parmi les caractéristiques.

Prenons un exemple

Imaginons un modèle prédictif utilisé dans le secteur financier pour évaluer le risque de crédit. SHAP peut révéler comment des caractéristiques telles que le score de crédit, le revenu annuel et l’historique de remboursement contribuent à la décision finale du modèle. Si un client se voit refuser un crédit, SHAP peut indiquer quelles caractéristiques ont le plus influencé cette décision négative, fournissant ainsi des indicateurs pertinents.

Utilisation avec Python

Python propose une bibliothèque pour SHAP. Cette dernière permet aux utilisateurs de tirer pleinement parti des avantages de SHAP pour l’interprétabilité des modèles.

Installation

La première étape, est bien sûr l’installation de la bibliothèque

pip install shap

Une fois installée, il ne reste plus qu’à l’importer dans votre environnement : 

import shap

Préparation des données

Supposons que vous ayez un modèle de Machine Learning déjà entraîné, tel qu’un modèle de forêt aléatoire pour la classification (RandomForestClassifier). Vous aurez donc besoin d’un ensemble de données pour l’analyse : 

from sklearn.model_selection import train_test_split

from sklearn.ensemble import RandomForestClassifier

import pandas as pd

# Load and prepare datas

data = pd.read_csv('my_amazing_dataset.csv')

X = data.drop('target', axis=1)

y = data['target']

# Split train and test set

X_train, X_test, y_train, y_test =
train_test_split(X, y, test_size=0.2, random_state=42)
# Train the model

model = RandomForestClassifier(random_state=42)

model.fit(X_train, y_train)

Analyse SHAP

Après entraînement du modèle, l’utilisation de SHAP vous permettra d’analyser l’impact des caractéristiques. Pour la poursuite de cet exemple, nous pouvons utiliser le Explainer Tree.

# Create Explainer Tree
explainer = shap.TreeExplainer(model)

# Compute SHAP Values on the test set

shap_values = explainer.shap_values(X_test)

Visualisation des résultats

SHAP offre bien évidemment diverses options de visualisation pour interpréter les résultats. Ainsi, pour avoir un résumé quant à l’importance des caractéristiques : 

shap.summary_plot(shap_values, X_test)
Il est également possible d’examiner l’impact d’une caractéristique spécifique : 
# Need to initialize javascript in order to display the plots
shap.initjs()

# View impact

shap.plots.force(explainer.expected_value[0], shap_values[0])

Pour conclure

SHAP (SHapley Additive exPlanations) est un outil puissant et polyvalent pour l’interprétabilité des modèles de Machine Learning. En s’appuyant sur les principes de la théorie des jeux coopératifs et de la Valeur de Shapley, il offre une méthode rigoureuse pour décomposer et comprendre les contributions des caractéristiques individuelles dans les prédictions d’un modèle.

L’utilisation de la bibliothèque SHAP en Python démontre sa facilité d’intégration et de mise en œuvre dans le workflow de data science. De plus, avec une Intelligence Artificielle devenant de plus en plus omniprésente, l’interprétabilité des modèles ne peut pas se permettre d’être sous-estimée.

Formations

Direct Query sur Power BI : Avantages, configuration et alternatives

Direct Query est une méthode permettant une connexion directe à une source de données avec Power BI. Découvrez tout ce que vous devez savoir : présentation, fonctionnement, avantages et inconvénients…

L’outil de business intelligence Power BI de Microsoft permet aux entreprises d’analyser et de visualiser des données de manière interactive. Il s’agit d’une plateforme complète, offrant de nombreuses fonctionnalités pour transformer les données brutes en informations exploitables pour la prise de décision stratégique.

Parmi ces différentes fonctionnalités, Direct Query permet de se connecter directement à une source de données externe. Par la suite, il est possible de travailler en temps réel avec les données sans avoir besoin de les copier comme c’est le cas avec la méthode classique d’importation.

À travers ce dossier, vous allez découvrir tout le fonctionnement de Direct Query et pourquoi cette méthode s’avère très utile dans certaines situations…

Qu’est-ce que Direct Query ?

À l’aide de Direct Query, les utilisateurs de Power BI peuvent se connecter directement à une source de données externes. Il peut s’agir d’une base de données, d’un fichier Excel, ou encore d’un service en ligne.

Dès que la connexion est établie, la requête est effectuée sur les données à la source et en temps réel. Les résultats sont ensuite affichés dans les visualisations de Power BI.

Afin de communiquer avec la source de données, Direct Query utilise un langage de requête comme SQL. Grâce à l’exécution en temps réel, les données sont toujours à jour et les résultats sont instantanés.

Apprendre à maîtriser Direct Query

Avantages et inconvénients

La possibilité d’accéder aux données en temps réel est l’un des principaux avantages offerts par Direct Query sur Power BI. Ceci permet une analyse des données plus précise, et plus efficace.

Par ailleurs, Direct Query évite le stockage redondant des données puisqu’il n’est pas nécessaire de les copier. Ainsi, les coûts de stockage peuvent être largement réduits.

Autre point fort : Direct Query peut exploiter des sources de données volumineuses sans avoir à les importer dans Power Query. Les utilisateurs n’ont donc guère à se soucier des limitations imposées par le stockage local.

Enfin, cette fonctionnalité permet d’optimiser les performances des rapports. Les données n’étant pas stockées localement, la taille du fichier est réduite et les temps de chargement s’en trouvent améliorés. Les problèmes de ralentissement sont également atténués.

Néanmoins, Direct Query comporte aussi des inconvénients et n’est donc pas toujours le choix idéal. Cette méthode de connexion directe impose une dépendance à une source de données en ligne, pouvant poser problème en cas de problème de connexion. Les temps de réponse peuvent augmenter.

Par ailleurs, les capacités de traitement de données sont limitées. La configuration de l’outil peut aussi s’avérer complexe…

Comment configurer Direct Query ?

La configuration de Direct Query s’effectue en plusieurs étapes. En premier lieu, il est nécessaire de se connecter à la source de données externes puis de créer un rapport dans Power BI.

On configure ensuite Direct Query afin d’utiliser les données en temps réel. Enfin, les visualisations et les filtres doivent être définis dans le rapport afin d’afficher les données.

Notons que la configuration de Direct Query peut varier en fonction de la source de données externe. C’est ce qui peut rendre la tâche potentiellement compliquée.

Par exemple, pour vous connecter à une base de données SQL Server, vous devrez sélectionner « Direct Query » comme méthode de connexion dans Power BI Desktop puis spécifier les informations de connexion à la base de données.

Précisons aussi que les fonctionnalités de transformation de données ne sont pas disponibles avec Direct Query. Par conséquent, toutes les transformations doivent être effectuées dans la source externe avant d’utiliser les données dans Power BI.

Enfin, certains types de données ne sont pas pris en charge par Direct Query. C’est notamment le cas des données semi-structurées.

Apprendre à utiliser Power BI

Direct Query vs Import : quelle est la meilleure méthode de connexion aux sources de données sur Power BI ?

Les deux principales méthodes de connexion à une source de données dans Power BI sont Direct Query et l’importation de données.

Cette dernière consiste à extraire les données de la source, afin de les stocker localement sur Power BI. C’est une alternative à la connexion directe offerte par Power BI.

En réalité, l’importation est la méthode la plus couramment utilisée. Après avoir extrait les données de la source, on les transforme en fonction des besoins avant de les stocker sur la plateforme.

Cette méthode est utile pour les sources de données volumineuses ou instables. Les données sont stockées localement, et les rapports peuvent donc être consultés indépendamment de la disponibilité de la source.

En revanche, ce stockage local peut consommer beaucoup d’espace sur le disque dur. Le volume d’importation est d’ailleurs limité à 1Go. De plus, les données peuvent rapidement devenir obsolètes si la source change fréquemment.

Conclusion : Direct Query, une alternative à l’importation de données sur Power BI

En conclusion, Direct Query est une fonctionnalité utile et puissante et Power BI permettant de travailler avec des données en temps réel et sans stockage redondant.

Toutefois, dans certains cas, il peut être préférable d’opter pour l’importation des données. Il est donc important de bien comprendre les avantages et inconvénients de chacune de ces méthodes.

Afin d’apprendre à maîtriser Power BI et ses nombreuses fonctionnalités comme Direct Query, vous pouvez choisir DataScientest.

Notre formation dédiée à Power BI se décline en trois formats : débutant, avancé ou maîtrise complète. La durée totale du programme est de 38 heures réparties sur 5 jours.

La partie destinée aux débutants permet d’apprendre à manier Direct Query et la connexion aux sources de données, le langage DAX et les bases de la dataviz.

Par la suite, au cours de la partie dédiée aux utilisateurs avancés, vous découvrirez le langage de formule M, ou encore des notions comme les DataFlows et l’actualisation incrémentielle.

À l’issue du cursus, vous serez capable de collecter, d’organiser, d’analyser les données avec Power BI et de créer des tableaux de bord interactifs. En tant que Microsoft Learning Partner officiel, DataScientest vous prépare aussi au passage de la certification Microsoft Power BI Data Analyst Associate.

Notre formation est également enregistrée au RNCP France Compétences, et notre organisme reconnu par l’État est éligible au Compte Personnel de Formation pour le financement. Découvrez DataScientest !

Découvrir la formation Power BI

Vous savez tout sur Direct Query dans Power BI. Pour plus d’informations sur le même sujet, découvrez notre dossier complet sur Power BI et notre dossier sur le langage DAX.

Formations

La formation de Digital Analyst – Guide complet

Que ce soit pour gagner en visibilité ou pour convertir des prospects en clients, la majorité des entreprises doit développer sa présence sur le web. Mais pour atteindre les objectifs fixés (en termes de notoriété ou de conversion), encore faut-il mettre en place les bonnes actions. Et pour savoir ce qui est le plus pertinent, il convient d’utiliser et d’exploiter toutes les données à disposition. C’est justement le rôle du digital analyst. Alors quel est ce nouveau métier ? Quelles sont ses missions ? Quelles sont les compétences indispensables ? Et surtout, quelle formation pour devenir digital analyst ? Nous répondons à toutes vos questions.

Qu’est-ce qu’un digital analyst ?

Également appelé web analyst ou chef de projet tracking, le digital analyst exploite toutes les données issues du web et des réseaux sociaux pour améliorer les performances de l’entreprise en ligne. Concrètement, l’analyse des données doit permettre d’optimiser l’expérience utilisateur sur un site web, comprendre les sources de trafic et plus globalement le retour sur investissement de toutes les actions entreprises via le site (SEA, SEO, landing pages…). Ce faisant, les organisations améliorent leur avantage concurrentiel.

À ce titre, le métier de chef de projet tracking est particulièrement prisé par les entreprises de tout secteur d’activité. Mais pour exercer cette profession, mieux vaut suivre une formation de digital analyst.

Quelles sont les missions d’un digital analyst ?

Pour améliorer les performances d’une entreprise sur le web grâce aux données, le digital analyst doit mettre en place les actions suivantes : 

  • Implémenter des outils de collecte de données : le web analyst doit récupérer un maximum d’informations sur le comportement des utilisateurs d’un site internet. À la fois pour mieux connaître sa cible (âge, secteur géographique, sexe…), mais aussi pour mieux comprendre ses habitudes (panier moyen, temps de visite, période de navigation, abandon de panier…). En effet, les actions de l’internaute sont des ressources précieuses pour l’entreprise. Et ce, tout au long du parcours client.
  • Analyser les données : les informations ainsi collectées permettent au digital analyst de déduire des tendances et d’identifier le client cible.
  • Représenter les données : si le chef de projet tracking peut comprendre facilement les milliers de lignes issus d’un fichier Excel, ce n’est pas forcément le cas des décisionnaires. Pour faciliter la compréhension par tous, cet expert data doit représenter les données à travers des outils de visualisation (notamment des graphiques, des tableaux de bord, des courbes…).
  • Faire des recommandations : en fonction de son analyse, il peut suggérer des actions pour améliorer l’expérience utilisateur, la stratégie digitale et la conversion globale du site web.
  • Animer des formations : cette mission n’est pas automatique. Mais force est de constater que l’analyse d’un site web et du comportement des utilisateurs concerne plusieurs départements de l’organisation. Par seulement les experts data. Ainsi, le digital analyst peut former les équipes marketing, commerciales, produit, …. L’idée est alors de les sensibiliser à l’importance des données pour prendre de meilleures décisions.

Pour remplir ces missions avec efficacité, nous vous conseillons de suivre une formation de digital analyst.

Maîtriser le rôle de digital analyst

Pourquoi suivre une formation digital analyst ?

Entre le monde des données et du marketing, le digital analyst doit posséder de multiples compétences techniques. À savoir : 

  • Le marketing digital ; 
  • Les langages informatiques (HTML, CSS…) ; 
  • Les outils d’analyse web (Google Analytics, Omniture, Webtrends…) ; 
  • La programmation web ; 
  • Les outils CRM.

Pour acquérir ces différentes hard skills, il est préférable de suivre une formation digital analyst. 

Au-delà de ces compétences techniques, le web analyst doit aussi disposer de plusieurs qualités personnelles. Par exemple, la curiosité pour continuer à se former sur les dernières tendances en marketing digital et les nouvelles technologies, ou encore un sens du relationnel pour former les équipes et apporter des recommandations.

Bon à savoir : la maîtrise de l’anglais est un plus pour devenir digital analyst.

Quelle formation pour être digital analyst ?

Que ce soit pour acquérir une connaissance des langages informatiques, des spécificités du marketing digital ou pour mettre en place des outils de collecte de données, il est primordial de se former. Mais à l’heure actuelle, il n’existe pas encore de formation spécifique pour devenir digital analyst. Cela dit, il est possible d’exercer ce métier après un bac+3 ou bac + 5 en marketing digital, mathématique statistique, communication et multimédias (en école de commerce ou à l’université). 

Et bien sûr, vous pouvez également suivre une formation de data analyst.

Rejoignez DataScientest pour devenir digital analyst

Si le digital analyst doit maîtriser le marketing, c’est avant tout un expert des données. Il doit déduire des insights afin d’aider les équipes à prendre de meilleures décisions. Mais pour maîtriser l’analyse de données, mieux vaut suivre une formation spécifique. C’est justement ce que nous vous proposons chez DataScientest. Grâce à nos formations data analyst (ou même data scientist, vous apprendrez à maîtriser les outils et la méthode de travail pour devenir digital analyst.

Devenir digital analyst

Définitions

Data Strategist : Quels sont les outils et missions de cet expert ?

Dans cet article, vous découvrirez ce qu’est le métier de Data Strategist. Vous allez pouvoir vous familiariser avec les différentes missions, les compétences indispensables et les outils de ce métier tant recherché ainsi que les atouts que ce rôle représente pour une entreprise et dans votre carrière.

Pour commencer, vous devez savoir qu’un Data Strategist est la personne qui va prendre en charge la gestion et l’analyse des données. Il va ensuite agir auprès des structures afin d’identifier les besoins de son activité principale et par la suite il élaborera un projet de développement, capable d’impacter des domaines aussi variés que le marketing, l’IT ou le business.

Quelles sont les missions d’un Data Strategist ?

  • Exécution de la stratégie avec le Chief Data Officer
  • Proposition de réponse innovantes et créatives dans le domaine de la data
  • Planification et chefferie de projets
  • Accompagnement des clients dans la compréhension de l’impact du Big Data
  • Conception, architecture et développement de solution d’intelligence artificielle
  • Développement des options dans le domaine de la Big Data
  • Analyse de leads 
  • Assistance aux équipes de développement commercial dans les activités d’avant-vente et les appels d’offres

Diagramme de Venn pour le Data Strategist

Les trois cercles présents dans ce diagramme représentent les trois domaines de connaissances les plus importants pour un Data Strategist :

  • Business
  • Communication
  • Data & Technologie

Le Data Strategist travaille principalement sur le côté business de la data. Il devra proposer des idées afin d’améliorer l’expansion de l’entreprise ou son organisation. À l’instar d’un chef de projet, il encadre les équipes fonctionnelles, recueille le besoin, gère les plannings, définit la stratégie technique et commerciale mais dans le domaine spécifique de la Big Data.

Quelles sont les compétences que doit avoir un Data Strategist ?

  • Diplôme d’une école de commerce ou d’ingénieur
  • Expériences significatives en Data Strategy, Data Gouvernance, Data Management
  • Maîtrise des technologies de gouvernance, Master Data Management, Analytics, Intelligence Artificielle, Business Intelligence
  • Aptitude en relation humaines et communication
  • Niveau d’anglais courant
  • Bonne compréhension du Machine Learning
  • Appétence pour l’analyse statistique
  • Esprit d’entreprise
  • Compétences en matière d’organisation

Quels sont les outils utilisés ?

Le Data Strategist utilise principalement Microsoft Power BI, qui est une solution d’analyse de données et un outil incontournable dans ce domaine, permettant d’effectuer les tâches suivantes :

  • La transformation des données
  • La modélisation et visualisation des données
  • La configuration de tableaux de bord, de rapports et applications

Pour permettre la mise en place d’un projet Cloud dans son intégralité, vous aurez besoin de maîtriser AWS qui régit les fonctions suivantes :

  • Conception des architectures résilientes et sécurisées
  • Infrastructure mondiale et fiabilité
  • Réseaux
  • Stockage base de données
  • Présentation du Well Architect Framework et des avantages du cloud

Les atouts de la profession

Les métiers de la data (Data Strategist, Data Scientist, Data Analyst ou Data Engineer) sont en pleine expansion. Peu de profils compétents sont disponibles sur le marché et les entreprises souffrent d’un cruel manque de ressources pour gérer et traiter leurs données.
C’est un domaine dans lequel vous trouverez pleine et entière satisfaction professionnelle, tant sur le plan de la stimulation intellectuelle que sur la montée en compétences constante, où les perspectives d’évolution sont prometteuses.
En complément des points spécifiés en amont, le salaire d’un Data Strategist représente un attrait supplémentaire. Il est évalué selon plusieurs critères :

  • Le niveau d’étude
  • Les compétences acquises
  • Les différentes expériences dans le domaine
  • Le type de structure qui recrute

De manière générale, la rémunération est plus élevée dans le privé que dans le secteur public, dont l’indice n’est pas forcément réévalué annuellement. La fourchette salariale pour la profession se situe entre 34000€ et 58000€ brut.
Vous savez maintenant tout sur le métier de Data Strategist.
Si vous souhaitez vous reconvertir dans ce domaine, n’hésitez pas à découvrir notre formation Power BI et AWS.

Brainstorm business intelligence
Dossier

Power BI: solution de Business Intelligence pour les entreprises

Il existe de nombreux outils appliqués au secteur des entreprises qui, dans bien des cas, facilitent la prise de décision pour les parties prenantes, des chefs de département aux équipes commerciales et jusqu’au Directeur général. Si aujourd’hui, nous manipulons de plus en plus de données et d’informations pour prendre des décisions, nous devons avoir l’aide supplémentaire de la technologie et nous appuyer sur des solutions logicielles d’entreprise pour rationaliser ces tâches.

Les solutions logicielles Microsoft Power BI, qui en Anglais se réfère à Business Intelligence, et que l’on peut traduire par l’intelligence d’affaires. Il s’agit de solutions commerciales qui aideront les responsables des entreprises à accélérer le processus de prise de décision.

La différenciation des entreprises passe par une prise de décision correcte. Aujourd’hui, nous vivons dans une époque entièrement numérique où les décisions doivent reposer sur une base solide d’informations et de données bien contrastées.

BI ou Business Intelligence

Power BI

Parler de Power BI, c’est parler des services Power BI, c’est-à-dire, de l’ensemble de solutions et des méthodes axées sur l’analyse et la compréhension du Big Data. Ce dernier fait ici référence au grand volume de données qui sont générées à la fois dans les environnements professionnels et personnels, que ce soit par les personnes ou toute autre entité constituée de plusieurs individus.

Tous ces outils sont compilés sous les méthodologies d’un plan d’affaires d’entreprise qui doit se concentrer sur la collecte, l’analyse et la vérification du Big Data afin de développer une trajectoire visuelle et synthétisée.

Si l’on veut vraiment disposer d’une solution logicielle de Business Intelligence, elle doit permettre de faire :

          Des extractions de données volumineuses

          De l’analyse de données en temps réel

          De la création de modèles de données

          Des visualisations de données

          De la création de rapports

À partir de ces lignes directrices, toute entité commerciale doit localiser et travailler sur les incidents qui se sont produits et choisir l’option la plus bénéfique et la plus correcte pour l’entreprise.

Microsoft Power BI pour les entreprises

Power BI est une solution de Business Intelligence présentée par Microsoft. Elle est axée sur les entreprises et les indépendants et permet de disposer à tout moment et en tout lieu de toutes les informations et de la situation de l’entreprise.

En utilisant Power BI, il est possible de créer des rapports et des visualisations personnalisées présentant l’ensemble de l’entreprise. Cela se fait par le biais de tableaux de bord générés par diverses bases de données, l’évolution des projets, le développement commercial et plusieurs autres actions de l’entreprise.

Power BI est l’un des outils de Microsoft qui ont la possibilité d’être localisés dans le Cloud, ce qui permet de connaître de manière rapide les informations les plus importantes des différents panneaux qui sont continuellement mis à jour.

Les données collectées pour cet outil sont produites à partir de sources de données très diverses, y compris à une base de données Microsoft SQL Server.

À travers le programme, on peut développer et connecter des bases de données, configurer l’évolution graphique pour plusieurs objectifs : évaluer l’état de l’entreprise, analyser l’évolution des ventes, connaître le volume des commandes, vérifier les paiements fournisseurs et bien d’autres actions d’analyse, le tout en temps réel.

Une autre nouvelle fonctionnalité de la solution Power BI Desktop est son canevas à partir duquel des onglets peuvent être générés selon les besoins. Cela permet à l’utilisateur de créer sa propre idée, de mieux comprendre, d’interpréter et d’avoir une plus grande capacité d’argumentation lorsque les parties prenantes de l’entreprise devront prendre des décisions sur la base des données.

Et bien sûr, tout cela a l’avantage d’être disponible et opérationnel dans l’environnement de l’informatique en nuage. Le Cloud se chargera d’effectuer et de générer les opérations et les calculs nécessaires pour obtenir les résultats.

Enfin, il faut souligner une autre des caractéristiques des plus attrayantes. Il s’agit de la possibilité de sauvegarder les informations sur ordinateur et ensuite de publier les données et les rapports depuis le site Power BI pour les partager avec d’autres utilisateurs en ligne.

Quels sont les avantages de l’application de Power BI ?

Employés faisant du business intelligence

Tous les départements d’une entreprise sont essentiels au bon fonctionnement de celle-ci. Si l’un d’entre eux échoue dans ses objectifs, une chaîne d’échecs se produira. Par conséquent, l’entreprise dans son ensemble en souffrira également. C’est là qu’intervient l’outil Power BI.

Les solutions Microsoft pour entreprises (Power BI, Power Query, Office 365…) permettent la transformation numérique pour un travail beaucoup plus productif. L’outil Power BI permet d’intégrer tous les départements dès sa mise en œuvre.

En effet, il existe 4 avantages pertinents concernant cette solution de Business Intelligence :

          Accessibilité : les bases de données et les services Power BI sont à la fois accessibles dans le Cloud et sur Desktop.

          Informations mises à jour en temps réel : lorsque des problèmes ou des opportunités sont détectés instantanément, une plus grande optimisation du fonctionnement de l’entreprise est obtenue. Avec Power BI, cette détection et cette identification se font en temps réel.

          Interface intuitive : les informations sont claires et hiérarchisées et proviennent depuis tous les départements de l’entreprise. Elles sont également intuitives pour garantir une accessibilité complète à tout utilisateur.

          Agilité : de par sa conception, sa stratégie d’organisation et sa hiérarchie, Power BI permet une restitution détaillée des informations autant de fois que nécessaire. La mise à jour se fait en temps réel.

En conclusion, Microsoft Power Bi est une application intelligente et prédictive qui est un grand encouragement pour les entreprises et leurs dirigeants lorsqu’il s’agit d’interpréter et d’analyser toutes les informations. Il permet d’interpréter tous types de données et de les afficher dans des graphiques totalement compréhensibles par tous. D’ailleurs, Power BI a encore une fois été élue meilleure plateforme d’analyse de données et de Business Intelligence dans le Magic Quadrant de Gartner.

data-marketing
Définitions

Qu’est-ce que le data marketing ? Quelle est son importance ?

Avec l’explosion des données clients, notamment des données personnelles, les entreprises cherchent des moyens d’obtenir des informations sur ce qui les entoure. Cela est fait dans le respect de la politique de confidentialité soutenue par le RGPD (règlement général sur la protection des données). Afin d’obtenir une perspective de leur activité sur le marché, elles ont recours à ce que beaucoup ont convenu d’appeler le data marketing : les moyens de connaître et de planifier des actions marketing à travers la mesure et le contrôle des données.

Qu’est-ce que le data marketing ?

Le data marketing est la mesure et l’analyse de toutes les sources d’informations disponibles, y compris sur les réseaux sociaux. Cette approche est ce qui est défini comme étant le data driven marketing. Les entreprises qui l’appliquent peuvent prendre des décisions qui influencent le contrôle et la définition d’une stratégie marketing et commerciale.

On peut dire que le data marketing n’est pas un type de marketing spécifique à l’instar du marketing entrant ou du marketing digital par les moteurs de recherche (SEO, SEM…). Bien que ces types de marketing coexistent, ils sont en grande partie séquentiels. Chacun d’eux fait partie de différentes parties de ce que l’on appelle l’entonnoir de vente marketing.

entonoire-des-ventes-data-marketing

Les bases de données marketing couvrent tous les composants d’une stratégie marketing. Chacun des éléments d’un plan marketing doit pouvoir être mesurable. De par sa nature même, il est une pièce complémentaire à l’ensemble des actions marketing qu’une entreprise mène. Ainsi, il permet de connaître l’utilisation des données qui affectent l’ensemble de sa stratégie marketing, soutenant son activité passée et présente pour établir de nouvelles campagnes publicitaires.

Que faire des données ?

La chose fondamentale dans le data marketing est que les entreprises peuvent étudier les modèles de comportement, la tendance des utilisateurs et leurs habitudes. Une fois que tout cela a été détecté, elles ont la possibilité de définir clairement les actions à appliquer en marketing.

Pour ce faire, elles ont deux solutions. L’une est manuelle où elles évaluent et supervisent toutes les données avec leur équipe. L’autre est d’utiliser l’intelligence artificielle par le biais d’outils d’apprentissage automatique qui se charge de révéler le moment pour réaliser l’action de communication.

En remontant l’histoire d’au moins une dizaine d’années, les données fondamentales pour exercer le contrôle de l’information et la gestion des données ont commencé à être développées dans le marketing. Cela a permis d’avoir le contrôle de toutes les informations qui affectent une entreprise.

Des données importantes et volumineuses sont collectées par les entreprises à chaque seconde. Il est essentiel de les reconnaître, de les stocker, de les collecter, de les classer et de les exporter. Ces techniques doivent aller de pair pour faciliter la compréhension de tous les processus.

Comment appliquer le data marketing ?

Pour mettre en place le data marketing dans une stratégie marketing, toute entreprise doit connaître les points suivants :

  • Volume de données. Toutes les données nécessaires sont tirées du Big Data. Il est essentiel de détecter celles qui affectent ou non le business model.
  • Organisation et hiérarchie. Grâce à un diagramme de flux de travail marketing, on sélection les données. Puis, on les hiérarchise et les organise.
  • Accès rapide. Il faut disposer d’un processus pour pouvoir consulter immédiatement les données lorsque c’est nécessaire.
  • Plusieurs sources. Toute entreprise doit disposer de différentes sources de données du Big Data pour pouvoir les intégrer dans sa stratégie marketing.
  • Procédure de données. Il est important de connaître et de croiser toutes les variables. L’objectif est de pouvoir extraire les informations sans erreur.
  • Visualisation des données. Les informations doivent donner la possibilité de les représenter sous forme de graphiques ou d’images pour les rendre plus compréhensibles.

stratégie-marketing-data-science

En appliquant toutes ces recommandations, une entreprise possède une valeur ajoutée précieuse pour la prise de décision dans sa stratégie marketing. Pour faire simple, il s’agit d’un modèle de gestion intelligent des données.

Quels sont les avantages du data marketing ?

Parmi les avantages, on peut citer les suivants :

  • Facilite la prise de décision.
  • Améliore la capacité stratégique d’une entreprise.
  • Améliore la mesure du risque et la capacité de gestion de l’entreprise.
  • Aide à comprendre l’entreprise et les clients.
  • Donne la possibilité de rechercher de nouvelles opportunités d’affaires.
  • Soutiens la réalisation des objectifs de l’entreprise.
master-big-data
Dossier

Travailler dans le Big Data : pourquoi suivre un cursus Master ?

Un Master Big Data peut signifier un débouché vers de nombreuses entreprises. Ces dernières ont en effet besoin de personnel professionnel pour gérer des données massives. Une formation en Big Data sert à obtenir des informations pertinentes permettant d’aider à la prise de décision. Et cela est essentiel dans la stratégie et la gestion de toute organisation, de la plus petite start up à la plus grande multinationale.

À grande échelle, le volume de données est énorme. Cela peut aller des transactions bancaires aux incidents de circulation en passant par les enregistrements des patients dans les hôpitaux, etc. Des milliards de données sont produites chaque seconde. En ce sens, une formation initiale ou continue dans le domaine du Big Data est l’un des pré-requis pour pouvoir travailler sur ces quantités colossales d’informations.

Quelques raisons de faire un Master Big Data

Il y a plusieurs raisons pour lesquelles il est tout à fait envisageable de se spécialiser dans le Big Data. En effet, un métier Big Data tel que le data analyst est un projet professionnel à la fois motivant et enrichissant.

Préparation aux défis

Le Master Big Data est intéressant pour la raison suivant : le professionnel se prépare à faire face à de nouveaux défis. Parmi ces derniers, on peut citer la vente, le Business Intelligence (BI), la gestion de bases de données, etc.

Vision globale

Le professionnel apprend à avoir une vision beaucoup plus globale de la nature des données. Sur cet aspect, il peut remarquer la différence dans leurs types et leur origine. Ainsi, il peut prendre une excellente décision lors de leur utilisation.

Développement des compétences techniques

Dans le Big Data, il est important que le professionnel soit capable de développer différentes techniques. Celles-ci lui permettront de faire une analyse des données. Comme pour le cas des data scientists, le développement d’une Intelligence artificielle via la Machine Learning permet de construire des modèles prédictifs.

machine-learning-big-data

Utilisation d’outils

Un Master Big Data permet de savoir comment utiliser les différents outils nécessaires à l’analyse des données, à leur bonne segmentation, à la description du client, etc.

Forte demande

Actuellement, les entreprises ont une très forte demande pour les métiers du Big Data. Par conséquent, un Master Big Data est une excellente voie pour se former dans l’un des domaines du Big Data qui sont requis par les meilleures entreprises du monde.

De meilleures opportunités d’emploi

Le Big Data est actuellement l’un des sujets les plus évoqués sur le marché du travail. La recherche d’expériences professionnelles est en hausse en raison du salaire élevé. Par conséquent, suivre un cursus Master Big Data augmente les chances de postuler pour de meilleurs emplois.

Une meilleure préparation

Un Master Big data permet d’avoir un profil et un cursus beaucoup plus spécialisés qui sont plus intéressants pour les entreprises. De cette manière, les possibilités sont plus larges et importantes.

Les sujets traités tout au long d’un Master Big Data

Un cursus Master Big Data peut se composé de différents modules de formation. Leur nombre dépend de l’école ou de l’université qui le propose. À titre d’exemple, celui de l’Université Paris 8 est une formation continue sur plusieurs domaines. Par exemple, l’Intelligence artificielle, les systèmes d’information, le Big Data et l’apprentissage automatique.

Pour faire simple, un Master Big Data consiste avant tout à inculquer aux étudiants le contenu de la partie calcul ou traitement du Big Data : développement de l’infrastructure, du stockage et du traitement des données. Ensuite, il y a la partie analytique de la data science qui porte sur le traitement, le nettoyage et la compréhension des données ainsi que l’application algorithmique et la visualisation des données.

Une fois ces bases acquises, les étudiants passent vers la partie concernant le Business Intelligence en mettant l’accent sur la réception et l’application pratique des données. Bien évidemment, des matières optionnelles peuvent être ajoutées au cursus afin d’acquérir des compétences spécifiques comme la gestion de projet Big Data, le Cloud Computing ou le Deep Learning.

Les compétences développées durant un Master Big Data

  • Programmation en R pour les méthodes statistiques et Python pour le Machine Learning.
  • Utilisation des plateformes telles qu’AWS, BigML, Tableau Software, Hadoop, MongoDB.
  • Gestion et récupération d’informations à l’aide de systèmes de gestion de bases de données relationnelles et NoSQL.
  • Traitement des données distribué et application des modèles MapReduce et Spark.
  • Configuration du framework Hadoop et utilisation des conteneurs.
  • Visualisation des données et de reporting pour l’évaluation des modèles de classification et des processus métier.
  • Procédures ETL et utilisation appropriée des stratégies à l’aide d’outils de pointe.
  • Conception de stratégies de Business Intelligence et intégration du Big Data avec le Data Warehouse.

data-warehouse

Les points forts d’un Master Big Data

Ceux qui souhaitent faire Master Big Data sont formés tout au long d’un cursus d’avant-garde. De plus, des mises à jour du contenu sont constamment enseignées en raison de l’évolution des technologies. Chaque étudiant acquière un profil professionnel qui répond aux besoins réels du marché.

En effet, le cursus comprend des phases pratiques. Ici, l’étudiant est formé aux nouvelles technologies liées au Big Data et aux outils les plus utilisés sur le marché du travail. Il travaille entre autre sur des projets pour développer et mettre en œuvre des solutions Big Data en situation réelle.

Par ailleurs, étant donné que des séminaires sur le domaine du Big Data sont souvent organisés, les étudiants en Master Big Data sont invités à y participer. Par exemple : des échanges avec des enseignants chercheurs, des chefs d’entreprise, etc. L’objectif est de compléter leurs connaissances des outils de Cloud Computing, Business Intelligence, Machine Learning, méthodologies de projet Big Data, etc.

Les débouchés avec un Master Big Data

Les professionnels du Big Data sont parmi les plus demandés par les entreprises. Ils seront également les plus recherchés à l’avenir. Les organisations se concentrent sur la collecte de données et l’analyse des informations clients ainsi que sur l’interprétation des données massives.

Le besoin de profils analytiques dans différents secteurs d’activité croît dans les entreprises. Par conséquent, elles requièrent plus d’analyse de données et de développement d’Intelligences Artificielles. C’est pour cette raison que les métiers du Big Data ci-dessous sont les postes en ligne de mire des détenteurs d’un Master Big Data.

1.      Chief data officer

Le chief data officer (CDO) est le responsable des données au plus haut niveau sur le plan technologique, commercial et sécuritaire. Il est chargé de la gestion des données en tant qu’actif de l’entreprise. Ses fonctions comprennent la stratégie d’exploitation des données et la gouvernance des données.

2.      Digital analyst

Sa mission est de donner du sens aux données collectées grâce à différents outils de mesure en ligne. À travers des rapports, des présentations et des tableaux de bord, il formule des recommandations stratégiques pour aligner les objectifs de l’entreprise sur ceux qu’il a pu mesurer en ligne. Il développe également des propositions d’optimisation pour les sites en ligne et conçoit des stratégies de mesure. Une connaissance approfondie du marketing, de la stratégie commerciale et des compétences en communication sont nécessaires pour qu’il ait la capacité de rendre compte des résultats.

3.      Data analyst

Il vise à donner du sens aux données collectées à partir des projets d’intégration Big Data et transforme ces données en informations utiles et pertinentes pour l’entreprise. Il est en charge de la gestion et de l’infrastructure des données, de la gestion des connaissances et de la direction des plans d’analyse de données dans des environnements tels que les réseaux sociaux. Une connaissance de la programmation, des bibliothèques d’analyse de données, des outils d’Intelligence artificielle et des rapports est requise.

4.      Data scientist

Le data scientist réalise des algorithmes d’apprentissage automatique qui seront capables d’automatiser les modèles prédictifs, c’est-à-dire, de prédire et de classer automatiquement les nouvelles informations. Pour ce faire, il possède des compétences en statistiques et mathématiques appliquées.

5.      Data architect

Ce professionnel est en charge de la conception et de la gestion de gros volumes de données. Il prépare les bases de données d’une manière alignée sur les objectifs de l’entreprise. Ainsi, d’autres professionnels peuvent effectuer l’analyse des données pertinentes.

6.      Business Intelligence analyst

Ce professionnel utilise des méthodes et des techniques analytiques pour comprendre le client et son impact sur l’entreprise. Il identifie les opportunités de monétisation grâce à l’analyse des données. Pour ce faire, il crée des stratégies centrées sur la relation client à partir de l’analyse des comportements issus du croisement des données CRM internes avec des données externes générées par l’interaction sociale. Cependant, il doit avoir un diplôme d’ingénieur, en statistiques ou en mathématiques ainsi que des compétences en gestion de bases de données et langages de programmation (ex : Python).

7.      Expert en éthique et confidentialité des données

C’est l’un des profils qui sera demandé à l’avenir. En effet, il s’adaptera rapidement à tous les changements à venir dans un environnement très complexe et ambigu.

data management
Définitions

Qu’est-ce que le data management ?

Le concept de data management ou gestion des données comprend une liste complète de sujets associés et connexes qui couvrent l’ensemble du processus de gestion et d’exploitation des données. Dans cette liste, nous pouvons trouver des termes tels que l’architecture de données, la modélisation de données, l’intégration de données, la qualité des données, le Big Data  la confidentialité et la sécurité des données. Il s’agit d’une partie du Business intelligence permettant, au même titre que les autres éléments clé de la data science, de mettre en place des outils optimisant la prise de décisions.

Qu’est-ce que le data management ?

On entend souvent parler de la gouvernance des données ou data governance. Mais, il ne s’agit que d’un élément clé du data management. Et la gestion des données est un ensemble complet de pratiques, de concepts, de procédures et de processus. C’est également un large éventail de systèmes complémentaires qui permettent à une organisation de prendre le contrôle de ses ressources d’informations, de la collecte à la sécurisation des données.

Le data management en tant que pratique générale concerne le cycle de vie complet de données de référence depuis leur point de création d’origine jusqu’à leur mise hors service finale.

Concepts autour du data management

Beaucoup de questions sont posées autour du sujet « data management » :

  • Est-il facile d’accéder, de nettoyer, d’intégrer et de stocker les données personnelles des gens ?
  • Quel type de données les acteurs au sein de l’entreprise utilisent-ils ?
  • L’entreprise dispose-t-elle d’un système efficace pour une analyse de données au fur et à mesure qu’elles circulent en interne ?

taches-data-management

Ces questions invitent à comprendre certains concepts permettant de connaître en profondeur ce qu’est réellement la gestion des données :

1.      Accès aux données

Ce terme fait référence à la capacité d’accéder et de récupérer des informations où qu’elles soient. Certaines technologies peuvent rendre cette étape aussi simple et efficace que possible afin que les entreprises puissent utiliser les données et ne pas seulement les trouver.

2.      Qualité des données

Il faut s’assurer que les données soient exactes et utilisables aux fins prévues. Cela commence à partir du moment où elles sont trouvées et se poursuit via divers points d’intégration avec d’autres données.

3.      Intégration de données

Ce terme définit les étapes pour combiner différents types de données. Les outils d’intégration de données permettent de concevoir et d’automatiser les étapes.

4.      Contrôle des données

Il s’agit d’un ensemble continu de règles et de décisions permettant de gérer les données d’une entreprise afin de garantir que la stratégie sur ces données est alignée celle de l’entreprise.

5.      Master data management (MDM)

Unification et gestion de toutes les données communes et essentielles à tous les domaines d’une organisation. Ces données de base sont généralement gérées à partir d’un seul emplacement ou concentrateur.

6.      Transmission de données

Implique l’analyse des données au fur et à mesure qu’elles se déplacent en appliquant une logique aux données : identification des modèles dans les données et filtration pour des utilisations multiples à mesure qu’elles circulent dans l’organisation.

Avantages apportés par le data management

Pour une entreprise, le data management est la première étape dans la gestion d’un volume de données à la fois structurées et non structurées. Mais, ce n’est que grâce aux meilleures pratiques qu’elle peut exploiter la puissance de ces données. C’est également l’unique solution pour obtenir les informations dont elle a besoin pour rendre les données utiles.

En fait, le data management permet aux organisations d’utiliser l’analyse des données à des fins de marketing et de relation client :

  • Personnaliser l’expérience client
  • Ajouter de la valeur aux interactions avec les clients
  • Identifier en temps réel les causes des échecs marketing
  • Récolter les revenus associés au marketing axé sur les données
  • Améliorer l’engagement client
  • Augmenter la fidélité des clients

CRM-Data-Management

Bonnes pratiques dans le data management

Dans toute opération de data management, il faut savoir gérer les données et acquérir les connaissances nécessaires pour prendre de bonnes décisions. Pour ce faire, il faut commencer par se poser une question d’ordre commerciale et acquérir les données nécessaires pour y répondre.

Les entreprises collectent de grandes quantités d’informations à partir de diverses sources. Elles utilisent ensuite les meilleures pratiques tout au long du processus de stockage et de gestion, de nettoyage et d’extraction des données. Enfin, elles procèdent à l’analyse et la visualisation des données pour éclairer leurs décisions commerciales.

Il est important de noter que les meilleures pratiques de gestion des données se traduisent par des améliorations analytiques en même temps. En gérant et en préparant correctement les données pour l’analyse, les entreprises optimisent leur Big Data.

Certaines des meilleures pratiques de data management que les entreprises cherchent désespérément à mettre en œuvre sont :

  • La simplification de l’accès aux données traditionnelles et émergentes.
  • Le nettoyage des données pour insuffler de la qualité dans les processus métier existants
  • Le façonnage des données à l’aide de techniques de manipulation flexibles
Définitions

Data analyst : fonctions et formation

Le métier de data analyst est de plus en plus prisé sur le marché du travail. Toutes sortes d’entreprises recherchent ses compétences. Tout le monde parle du Big Data, de l’apprentissage automatique ou Machine Learning, du traitement de données, de la gestion de l’analyse de données et de l’exploration de données.

Dans cet article, nous allons apporter des explications sur le cœur de métier d’un analyste de données et tout ce qu’il apprend tout le long de la formation data analyst.

Le Big Data : centre de gravité de la formation data analyst

Bon nombre de jeunes diplômés se demandent encore pourquoi suivre une formation en Big Data. La réponse peut se résumer comme suit : parce que c’est ainsi qu’ils peuvent s’assurer d’avoir un emploi à l’avenir.

Beaucoup ne savent pas encore ce qu’est l’analyse de données. Pour résumer, il s’agit du moyen de rendre toutes les données acquises dans l’environnement numérique compréhensibles et utiles pour les entreprises à travers son analyse et sa gestion. Différents domaines de l’entreprise en bénéficie : marketing, commerce, relation client ou CRM, etc. Pour ce faire, le data analyst travaille  avec des méthodologies de business intelligence et des outils logiciels spécifiques.

Que fait un data analyst ?

Il est important de connaître les principales fonctions d’un data analyst avant d’avoir un projet professionnel d’en devenir un.

1.      Identification des données

La première chose qu’un data analyst fait avant d’analyser et de traiter les données est d’identifier les informations. Il s’agit uniquement des données qui intéressent l’entreprise depuis différentes sources. Pour ce faire, il doit structurer ou ordonner toutes ces données dans des graphiques et des tableaux pour en faire une présentation adéquate.

fonctions-data-analyst

2.      Établir des directives sur le comportement des clients

Une des principales fonctions du data analyst est de mettre en œuvre les stratégies nécessaires pour guider l’entreprise en fonction du comportement des clients. Les canaux numériques sont généralement les principaux domaines concernés. En effet, des actions plus personnalisées doivent être menées pour déterminer exactement ce que le public souhaite.

3.      Traitement et regroupement des informations

L’analyste de données doit développer un traitement de données ardu à travers des opérations mathématiques et l’utilisation de langages de programmation. Il faut ensuite les regrouper par catégories d’informations pour les ordonner et en tirer des conclusions à forte valeur ajoutée pour l’entreprise.

4.      Effectuer une communication transparente avec l’organisation

Travailler en tant que data analyst est en réalité devenir le gardien de toutes les informations traitées par l’entreprise. Son rôle est de générer des rapports. Ces derniers sont destinés aux services qui bénéficient des données analysées. Par conséquent, ils doivent être conforme au domaine d’activité de l’entreprise. D’une certaine manière, il interprète les données pour en tirer des informations utiles pour la prise de décision.

Pré requis pour suivre une formation data analyst

Pour devenir data analyst, il est nécessaire de répondre aux exigences essentielles répondant aux rigueurs du poste.

Niveau d’étude minimum

Devenir un data analyst n’est pas à la portée de quelqu’un ayant un niveau bac. Il faut au minimum avoir suivi une formation dans une école de marketing ou une école spécialisée dans le digital. Il existe toutefois plusieurs formations dispensées par des écoles d’informatique, des centres de formation et même par Pôle Emploi.

Par ailleurs, il n’est pas rare de voir l’analyse de données comme une spécialisation. C’est le cas notamment dans certains cursus pour l’obtention d’une Licence professionnelle, d’un Master ou d’un Master spécialisée.

Capacité de synthèse de données

Il est nécessaire d’avoir la capacité de synthétiser des données pour savoir comment choisir et extraire les informations les plus pertinentes et utiles pour l’entreprise. Il est très important de connaître ses objectifs au même titre que le secteur dans lequel elle opère. La détection des problèmes et leur résolution grâce à une analyse exhaustive de leurs caractéristiques fait ensuite appel à cette extraction de données.

pre-requis-formation-data_analyst

Communication fluide avec les parties prenantes

Il est nécessaire pour le data analyst d’avoir une communication fluide avec les dirigeants et les managers. Ce sont des pré-requis pour pouvoir expliquer les résultats de manière précise sans entrer dans les détails techniques. Un langage simple permettra à la direction de mieux comprendre la portée des conclusions de l’analyse.

Langage de programmation

Un data analyst doit avoir de bonnes compétences informatiques et savoir gérer les langages de programmation. En même temps, il doit maîtriser les mathématiques statistiques pour développer une analyse adéquate et tirer des conclusions d’un point de vue critique et objectif.

Transformer les données en recommandations est l’une des qualités les plus appréciées par les employeurs. C’est pour cela qu’ils décident d’inclure un data scientist et un data analyst parmi leur personnel.

Qu’apprend-on d’une formation data analyst ?

On peut trouver facilement en ligne une formation data analyst . Que ce soit chez Pôle Emploi ou via une formation mise en place à distance, il existe de multiples sujets traités. Certains sont souvent abordés jusqu’à la fin de la formation :

  • Fondamentaux du Big Data (techniques et concepts)
  • Data science (comprendre la science des données)
  • Comprendre le Big Data (analyse et visualisation des données)
  • Comprendre l’analyse des données (Power BI)
  • Business Intelligence (différence avec l’analyse de données)
  • Langages de programmation (Python, R…)
  • Techniques et outils de reporting essentiels
  • Techniques outils et de reporting avancés
  • Etc.
Dossier

Power BI : Définition et 6 raisons d’utilisation

Jusqu’à présent, les données sont la meilleure source de connaissances pour les entreprises. En effet, elles en génèrent plus que jamais, d’où l’apparition du terme Big Data. Cependant, accumuler de telles quantités d’informations numériques à très peu d’utilité à moins que ces organisations en comprennent le sens. C’est là qu’interviennent les logiciels de Business Intelligence en self-service tels que Power BI.

Qu’est-ce que Power BI ?

Power BI est le nom commun attribué à une variété d’applications et de services basés sur le Cloud. Ces derniers sont conçus pour aider les entreprises à collecter, gérer et analyser diverses sources de données via une interface facile à utiliser. Il permet de rassembler les données et de les traiter. Mais surtout, il est utile pour transformer les données en informations intelligibles souvent à l’aide de graphiques et de tableaux visuellement précis et faciles à traiter. Cela permet aux utilisateurs de créer des rapports interactifs et de les partager à toutes les parties prenantes d’une entreprise.

Cette application Microsoft se connecte à une variété de sources de données. Il peut s’agir de feuilles de calcul Excel ou de bases de données sur un data warehouse. Il peut également se connecter à des applications à la fois dans le Cloud et sur les serveurs de l’entreprise.

Cette appellation est un terme général et peut faire référence à une application de bureau Windows appelée Power BI Desktop. Il peut s’agir d’un outil ETL (Extract, Transform and Load) dénommé Power Query ou d’un service en ligne SaaS (Software as a Service) appelé Power BI Service. Il peut aussi s’agir d’applications mobiles Power BI pour les Smartphones et tablettes Windows ainsi que pour les appareils iOS et Android.

interface-power-bi

Power BI est basé sur Microsoft Excel. En tant que tel, la courbe d’apprentissage d’Excel vers Power BI n’est pas si raide. Quiconque peut utiliser Excel peut utiliser Power BI. Mais, ce dernier est beaucoup plus puissant que la feuille de calcul.

Que fait cette application d’analyse de données ?

Dans tout environnement d’entreprise, il est essentiel d’unifier toutes les informations disponibles autour d’une même plateforme que ce soit dans le Cloud ou en local. Pour ce faire, Power BI est l’outil idéal. Il permet d’appliquer les connaissances de la Business Intelligence (BI) en exploitant des données en temps réel provenant de différentes sources et en créant des rapports. Sur un simple tableau de bord se trouvent les résultats de tous les éléments à analyser et partager entre plusieurs professionnels d’une même entreprise.

En effet, cette application d’analyse de données est utilisée pour la création de rapports basés sur les données de l’entreprise. En utilisant Power BI, l’utilisateur peut se connecter à un large éventail d’ensembles de données et classer les informations fournies par le biais de la data visualisation afin qu’elles puissent être mieux comprises et assimilées. Le tableau de bord généré à partir de ces données peut être partagé avec d’autres utilisateurs.

Power BI aide les entreprises à voir non seulement ce qui s’est déroulé dans le passé et ce qui se passe dans le présent, mais également ce qui pourrait se produire dans le futur. Cet outil d’analyse de données est doté de fonctionnalités d’apprentissage automatique. Il permet ainsi à son utilisateur de détecter un modèle de données et d’utiliser ce modèle pour effectuer des prédictions éclairées et exécuter des scénarios de simulation. Ces estimations permettent à l’entreprise pour laquelle il travaille de générer des prévisions. Elle aura ainsi la capacité de se préparer à répondre à la demande future et à adopter des mesures clés.

6 raisons d’utiliser Power BI 

Pour les entreprises qui souhaitent plus de puissance de reporting et de force analytique que ce qu’offre Excel, Power BI est à un tout autre niveau du Business Intelligence. Avec cet outil, les entreprises peuvent collecter, analyser et visualiser l’ensemble de leurs données, ce qui leur donne un meilleur aperçu de leur productivité et de leur compétitivité. Ainsi, elles peuvent prendre des décisions plus éclairées basées sur des données réelles.

Pour mieux comprendre la puissance de Power Bi, voici quelques-uns de ses principaux avantages :

  • Les entreprises peuvent gérer de grandes quantités de données via cette application qu’en utilisant d’autres plateformes d’analyse de données.
  • Les informations peuvent être visualisées à l’aide de modèles afin que les entreprises puissent mieux comprendre leurs données.
  • Il est basé sur le service Cloud de sorte que les utilisateurs bénéficient de capacités d’intelligence de pointe et d’algorithmes puissants régulièrement mis à jour.
  • Plusieurs personnalisations permettent aux utilisateurs de créer des tableaux de bord afin d’accéder rapidement aux données dont ils ont besoin.
  • Il propose une interface intuitive qui le rend beaucoup plus facile à utiliser que les feuilles de calcul complexes.
  • Il garantit la sécurité des données en offrant des contrôles d’accessibilité internes et externes.

avantages-power-bi

Pour résumer, Power BI est la solution professionnelle pour visualiser et transformer les données. Mais, il sert surtout à partager des informations avec tous les services de l’entreprise, de manière efficace et rapide. Grâce à ses tableaux de bord intuitifs et à son contrôle d’accessibilité, tout le monde dispose d’informations en temps réel. Toutes les parties prenantes pourront les consulter à tout moment et en tout lieu.

L’analyse des données pour soutenir la prise de décision

Power BI est l’un des plus pratiques et performants outils Microsoft pour l’analyse de données. Il s’est imposé comme le leader du secteur. Il reflète d’ailleurs les connaissances et l’expérience de Microsoft dans ce domaine à travers des solutions telles qu’Excel ou SQL Server et ses compléments (SSAS, SSIS et SSRS).

Power BI facilite la transformation des données en informations grâce à des modèles analytiques. Cela va de l’information à la connaissance en passant par des rapports analytiques avec des graphiques, des tableaux, etc. L’objectif de Microsoft est d’offrir un outil de prise de décisions intelligentes en réduisant les risques. Il apporte une réponse efficace aux besoins d’un des professionnels qui interviennent dans ce domaine : le data analyst.

À part cela, Power Bi est également un outil multiplateforme pour la surveillance de l’entreprise en temps réel par les parties prenantes partout et à tout moment.

L’autre atout de Power BI dans l’analyse des données est son intégration totale avec la suite Office 365. Il donne accès à SharePoint, à un calendrier, à Microsoft Flow pour les flux de travail et à une longue liste de fonctionnalités et de possibilités sans quitter l’environnement Office 365.

Par ailleurs, Microsoft s’est fortement engagé envers les techniques d’apprentissage automatique. Power BI offre de multiples fonctionnalités dans ce domaine :

  • L’analyse automatique des informations
  • Le calcul des corrélations
  • L’identification de valeurs aberrantes
  • Le regroupement
  • L’intégration de Python pour l’importation de données et la création de graphiques
  • Etc.