Browsing Tag

Machine Learning

Dossier

Power BI : Définition et 6 raisons d’utilisation

Jusqu’à présent, les données sont la meilleure source de connaissances pour les entreprises. En effet, elles en génèrent plus que jamais, d’où l’apparition du terme Big Data. Cependant, accumuler de telles quantités d’informations numériques à très peu d’utilité à moins que ces organisations en comprennent le sens. C’est là qu’interviennent les logiciels de Business Intelligence en self-service tels que Power BI.

Qu’est-ce que Power BI ?

Power BI est le nom commun attribué à une variété d’applications et de services basés sur le Cloud. Ces derniers sont conçus pour aider les entreprises à collecter, gérer et analyser diverses sources de données via une interface facile à utiliser. Il permet de rassembler les données et de les traiter. Mais surtout, il est utile pour transformer les données en informations intelligibles souvent à l’aide de graphiques et de tableaux visuellement précis et faciles à traiter. Cela permet aux utilisateurs de créer des rapports interactifs et de les partager à toutes les parties prenantes d’une entreprise.

Cette application Microsoft se connecte à une variété de sources de données. Il peut s’agir de feuilles de calcul Excel ou de bases de données sur un data warehouse. Il peut également se connecter à des applications à la fois dans le Cloud et sur les serveurs de l’entreprise.

Cette appellation est un terme général et peut faire référence à une application de bureau Windows appelée Power BI Desktop. Il peut s’agir d’un outil ETL (Extract, Transform and Load) dénommé Power Query ou d’un service en ligne SaaS (Software as a Service) appelé Power BI Service. Il peut aussi s’agir d’applications mobiles Power BI pour les Smartphones et tablettes Windows ainsi que pour les appareils iOS et Android.

interface-power-bi

Power BI est basé sur Microsoft Excel. En tant que tel, la courbe d’apprentissage d’Excel vers Power BI n’est pas si raide. Quiconque peut utiliser Excel peut utiliser Power BI. Mais, ce dernier est beaucoup plus puissant que la feuille de calcul.

Que fait cette application d’analyse de données ?

Dans tout environnement d’entreprise, il est essentiel d’unifier toutes les informations disponibles autour d’une même plateforme que ce soit dans le Cloud ou en local. Pour ce faire, Power BI est l’outil idéal. Il permet d’appliquer les connaissances de la Business Intelligence (BI) en exploitant des données en temps réel provenant de différentes sources et en créant des rapports. Sur un simple tableau de bord se trouvent les résultats de tous les éléments à analyser et partager entre plusieurs professionnels d’une même entreprise.

En effet, cette application d’analyse de données est utilisée pour la création de rapports basés sur les données de l’entreprise. En utilisant Power BI, l’utilisateur peut se connecter à un large éventail d’ensembles de données et classer les informations fournies par le biais de la data visualisation afin qu’elles puissent être mieux comprises et assimilées. Le tableau de bord généré à partir de ces données peut être partagé avec d’autres utilisateurs.

Power BI aide les entreprises à voir non seulement ce qui s’est déroulé dans le passé et ce qui se passe dans le présent, mais également ce qui pourrait se produire dans le futur. Cet outil d’analyse de données est doté de fonctionnalités d’apprentissage automatique. Il permet ainsi à son utilisateur de détecter un modèle de données et d’utiliser ce modèle pour effectuer des prédictions éclairées et exécuter des scénarios de simulation. Ces estimations permettent à l’entreprise pour laquelle il travaille de générer des prévisions. Elle aura ainsi la capacité de se préparer à répondre à la demande future et à adopter des mesures clés.

6 raisons d’utiliser Power BI 

Pour les entreprises qui souhaitent plus de puissance de reporting et de force analytique que ce qu’offre Excel, Power BI est à un tout autre niveau du Business Intelligence. Avec cet outil, les entreprises peuvent collecter, analyser et visualiser l’ensemble de leurs données, ce qui leur donne un meilleur aperçu de leur productivité et de leur compétitivité. Ainsi, elles peuvent prendre des décisions plus éclairées basées sur des données réelles.

Pour mieux comprendre la puissance de Power Bi, voici quelques-uns de ses principaux avantages :

  • Les entreprises peuvent gérer de grandes quantités de données via cette application qu’en utilisant d’autres plateformes d’analyse de données.
  • Les informations peuvent être visualisées à l’aide de modèles afin que les entreprises puissent mieux comprendre leurs données.
  • Il est basé sur le service Cloud de sorte que les utilisateurs bénéficient de capacités d’intelligence de pointe et d’algorithmes puissants régulièrement mis à jour.
  • Plusieurs personnalisations permettent aux utilisateurs de créer des tableaux de bord afin d’accéder rapidement aux données dont ils ont besoin.
  • Il propose une interface intuitive qui le rend beaucoup plus facile à utiliser que les feuilles de calcul complexes.
  • Il garantit la sécurité des données en offrant des contrôles d’accessibilité internes et externes.

avantages-power-bi

Pour résumer, Power BI est la solution professionnelle pour visualiser et transformer les données. Mais, il sert surtout à partager des informations avec tous les services de l’entreprise, de manière efficace et rapide. Grâce à ses tableaux de bord intuitifs et à son contrôle d’accessibilité, tout le monde dispose d’informations en temps réel. Toutes les parties prenantes pourront les consulter à tout moment et en tout lieu.

L’analyse des données pour soutenir la prise de décision

Power BI est l’un des plus pratiques et performants outils Microsoft pour l’analyse de données. Il s’est imposé comme le leader du secteur. Il reflète d’ailleurs les connaissances et l’expérience de Microsoft dans ce domaine à travers des solutions telles qu’Excel ou SQL Server et ses compléments (SSAS, SSIS et SSRS).

Power BI facilite la transformation des données en informations grâce à des modèles analytiques. Cela va de l’information à la connaissance en passant par des rapports analytiques avec des graphiques, des tableaux, etc. L’objectif de Microsoft est d’offrir un outil de prise de décisions intelligentes en réduisant les risques. Il apporte une réponse efficace aux besoins d’un des professionnels qui interviennent dans ce domaine : le data analyst.

À part cela, Power Bi est également un outil multiplateforme pour la surveillance de l’entreprise en temps réel par les parties prenantes partout et à tout moment.

L’autre atout de Power BI dans l’analyse des données est son intégration totale avec la suite Office 365. Il donne accès à SharePoint, à un calendrier, à Microsoft Flow pour les flux de travail et à une longue liste de fonctionnalités et de possibilités sans quitter l’environnement Office 365.

Par ailleurs, Microsoft s’est fortement engagé envers les techniques d’apprentissage automatique. Power BI offre de multiples fonctionnalités dans ce domaine :

  • L’analyse automatique des informations
  • Le calcul des corrélations
  • L’identification de valeurs aberrantes
  • Le regroupement
  • L’intégration de Python pour l’importation de données et la création de graphiques
  • Etc.
data-scientist-data-analyst
Dossier

Data Scientist vs Data Analyst : Quelle est la différence ?

De nombreuses divergences d’opinions subsistent concernant les rôles et les compétences autour du Big Data. Cela crée beaucoup de confusions. Par conséquent, beaucoup se posent cette question : qu’est-ce qui distingue un data scientist d’un data analyst ?

De nombreux non-initiés à la data science ont une perception du data scientist comme étant juste un terme enjolivé pour définir le data analyst.

Une raison importante de cette imprécision est le fait que certaines entreprises aient plusieurs façons de définir le rôle de chacun de ces experts. Dans la pratique, les titres des métiers ne reflètent pas toujours fidèlement les activités et responsabilités réelles de chacun. Par exemple, il existe des start-ups qui usent du titre de « data scientist » sur des descriptions de poste plutôt destinées à des data analysts.

En outre, la science des données est un domaine qui n’est qu’à ses balbutiements. Les gens connaissent encore très peu de choses concernant son fonctionnement interne. Ainsi, s’il faut comprendre la différence entre un data analyst et un data scientist, il est tout d’abord important de faire un retour sur l’activité et le rôle de chacun d’eux.

Que fait un data analyst ?

Au quotidien, un data analyst collecte des données, les organise et les utilise pour tirer des conclusions pertinentes. La majorité des entreprises de tous les secteurs peuvent nécessiter et bénéficier du travail d’un data analyst. Il peut s’agir des prestataires de soins de santé ou des magasins de détail. Les analystes de données passent leur temps à développer de nouveaux processus et systèmes pour collecter des données et compiler leurs conclusions pour améliorer les affaires.

Le métier de data analyst consiste à fournir des rapports, examiner les modèles et collaborer avec les parties prenantes dans une organisation. Dans cette tâche, l’un de ses rôles consiste à collaborer avec plusieurs services d’une entreprise, y compris avec les experts en marketing. Il se joint également à ses pairs qui travaillent sur des données comme les développeurs de bases de données et les architectes de données.

Il doit également consolider les données et mettre en place une structure qui permette de les utiliser. C’est l’aspect le plus technique de son rôle, car il consiste à collecter les données elles-mêmes. En effet, il s’agit de la clé du travail des analystes de données. Ils travaillent pour visualiser, analyser et examiner les modèles, les erreurs et les particularités des données afin qu’elles aient de la valeur et puissent être utilisées dans plusieurs domaines.

Suivre une formation Data Analyst

data-analyst-data-scientist

Que fait un data scientist ?

Le data scientist est un innovateur en matière d’apprentissage automatique. Contrairement au data analyst, les problèmes ne sont pas soumis au data scientist avec des questions clairement formulées par les parties prenantes de l’entreprise, mais plutôt avec des questions qui sont déterminées par des approches plus techniques. La solution est développée à l’aide d’un large répertoire de méthodes statistiques basées à la fois sur des données structurées et non structurées. Il n’est pas toujours nécessaire que ces données soient déjà disponibles dans l’entreprise et enregistrées de manière bien structurée.

En effet, le data scientist doit acquérir des connaissances en utilisant des données, c’est-à-dire, il analyse les données dans le but de soutenir d’autres départements. Cela lui implique d’utiliser une gamme d’outils tels que Python pour les langages de programmation de ses algorithmes d’apprentissage automatique, des outils d’exploration de données et même des services cloud scientist qualifié doit être capable de faire beaucoup ou au moins être suffisamment flexible pour s’y habituer rapidement.

Ses besoins en infrastructure d’acquisition, de stockage et d’analyse sont par conséquent plus élevés. En plus des données non structurées, les données volumineuses du Big Data sont également enregistrées et analysées. Cela va généralement au-delà des systèmes traditionnels d’entreposage de données et nécessite de nouvelles approches telles qu’un data lake.

Comparaison des compétences d’un data analyst vs data scientist

Les tâches des data analysts et des data scientist se chevauchent à bien des égards. Cela est en partie dû au fait que tout le domaine professionnel autour du Big Data se développe rapidement et que de nouveaux titres de poste émergent constamment sans pour autant être définis de manière uniforme.

Mais, outre ces quelques similitudes, des différences importantes sont à noter et peuvent être résumées sous les trois questions suivantes :

Qui pose les questions ?

Un data scientist formule les questions pour l’entreprise auxquelles il souhaite répondre avec sa base de données. Un data analyst est en revanche chargé par d’autres équipes de l’entreprise de rechercher une solution à leurs questions.

Quel niveau d’étude pour commencer ?

Un data analyst peut commencer sa carrière avec un baccalauréat à composante scientifique . Un master est généralement exigé de la part d’un data scientist parce qu’il doit maîtriser les maths statistiques et les technologies de l’information.

Quel rôle joue la machine learning ?

Le data analyst doit maîtriser le langage SQL et Oracle Database tout en sachant utiliser les outils de veille stratégique tels que Power BI et de visualisation de données comme Shiny et Google Analytics. De son côté, le data scientist développe ses propres modèles d’apprentissage automatique qui utilisent l’ensemble des données comme base de formation pour apprendre de nouvelles choses. 

deep-learning
Dossier

Deep learning : Qu’est-ce que c’est ? Comment ça marche ? Quelles sont les applications ?

Nous sommes actuellement à un stade où l’on cherche à ce que les machines soient dotées d’une plus grande intelligence, atteignent une pensée autonome et une grande capacité d’apprentissage. Le deep learning ou apprentissage en profondeur est un concept relativement nouveau allant dans cette perspective. Il est étroitement lié à l’intelligence artificielle (IA) et fait partie des approches algorithmiques d’apprentissage automatique.

Qu’est-ce que le deep learning ?

Le deep learning ou apprentissage profond est défini comme un ensemble d’algorithmes qui se compose d’un réseau de neurones artificiels capables d’apprendre, s’inspirant du réseau de neurones du cerveau humain. En ce sens, il est considéré comme un sous-domaine de l’apprentissage automatique. L’apprentissage profond est lié aux modèles de communication d’un cerveau biologique, ce qui lui permet de structurer et de traiter les informations.

L’une des principales caractéristiques de l’apprentissage profond est qu’il permet d’apprendre à différents niveaux d’abstraction. Autrement dit, l’utilisateur peut hiérarchiser les informations en concepts. De même, une cascade de couches de neurones est utilisée pour l’extraction et la transformation des informations.

Le deep learning peut apprendre de deux manières : l’apprentissage supervisé et l’apprentissage non supervisé. Cela permet au processus d’être beaucoup plus rapide et plus précis. Dans certains cas, l’apprentissage profond est connu sous le nom d’apprentissage neuronal profond ou de réseaux neuronaux profonds. En effet, la définition la plus précise est que l’apprentissage profond imite le fonctionnement du cerveau humain.

Grâce à l’ère du Cloud Computing et du Big Data, le deep learning a connu une croissance significative. Avec lui, un haut niveau de précision a été atteint. Et cela a causé tellement d’étonnements, car il se rapproche chaque jour de la puissance perceptive d’un être humain.

Comment fonctionne le deep learning ?

Le deep learning fonctionne grâce à des réseaux de neurones profonds. Il utilise un grand nombre de processeurs fonctionnant en parallèle.

Les réseaux de neurones sont regroupés en trois couches différentes : couche d’entrée, couche cachée et couche de sortie. La première couche, comme son nom l’indique, reçoit les données d’entrée. Ces informations sont transmises aux couches cachées qui effectuent des calculs mathématiques permettant d’établir de nouvelles entrées. Enfin, la couche de sortie est chargée de fournir un résultat.

Mais, les réseaux de neurones ne fonctionnent pas si on ne tient pas compte de deux facteurs. Le premier est qu’il faut beaucoup de puissance de calcul. Le second fait référence au gigantesque volume de données auquel ils doivent accéder pour s’entraîner.

Pour sa part, les réseaux de neurones artificiels peuvent être entraînés à l’aide d’une technique appelée rétropropagation. Elle consiste à modifier les poids des neurones pour qu’ils donnent un résultat exact. En ce sens, ils sont modifiés en fonction de l’erreur obtenue et de la participation de chaque neurone.

deep-learning-apprentissage-profond

Pour son bon fonctionnement, l’utilisation d’un processeur graphique est également importante. Autrement dit, un GPU dédié est utilisé pour le traitement graphique ou les opérations en virgule flottante. Pour traiter un tel processus, l’ordinateur doit être super puissant afin de pouvoir fonctionner avec un minimum de marge d’erreur.

L’apprentissage en profondeur a permis de produire de meilleurs résultats dans les tâches de perception informatique, car il imite les caractéristiques architecturales du système nerveux. En fait, ces avancées peuvent lui permettre d’intégrer des fonctions telles que la mémoire sémantique, l’attention et le raisonnement. L’objectif est que le niveau d’intelligence artificielle soit équivalent au niveau d’intelligence humain, voire le dépasser grâce à l’innovation technologique.

Quelles sont les applications du deep learning dans l’analyse du Big Data ?

Le deep learning dans l’analyse du Big Data est devenu une priorité de la science des données. On peut en effet identifier trois applications.

Indexation sémantique

La recherche d’informations est une tâche clé de l’analyse du Big Data. Le stockage et la récupération efficaces des informations sont un problème croissant. Les données en grande quantité telles que des textes, des images, des vidéos et des fichiers audio sont collectées dans divers domaines. Par conséquent, les stratégies et solutions qui étaient auparavant utilisées pour le stockage et la récupération d’informations sont remises en question par ce volume massif de données.

L’indexation sémantique s’avère être une technique efficace, car elle facilite la découverte et la compréhension des connaissances. Ainsi, les moteurs de recherche ont la capacité de fonctionner plus rapidement et plus efficacement.

Effectuer des tâches discriminantes

Tout en effectuant des tâches discriminantes dans l’analyse du Big Data, les algorithmes d’apprentissage permettent aux utilisateurs d’extraire des fonctionnalités non linéaires compliquées à partir des données brutes. Il facilite également l’utilisation de modèles linéaires pour effectuer des tâches discriminantes en utilisant les caractéristiques extraites en entrée.

Cette approche présente deux avantages. Premièrement, l’extraction de fonctionnalités avec le deep learning ajoute de la non-linéarité à l’analyse des données, associant ainsi étroitement les tâches discriminantes à l’IA. Deuxièmement, l’application de modèles analytiques linéaires sur les fonctionnalités extraites est plus efficace en termes de calcul. Ces deux avantages sont importants pour le Big Data, car ils permettent d’accomplir des tâches complexes comme la reconnaissance faciale dans les images, la compréhension de millions d’images, etc.

Balisage d’images et de vidéos sémantiques

Les mécanismes d’apprentissage profond peuvent faciliter la segmentation et l’annotation des scènes d’images complexes. Le deep learning peut également être utilisé pour la reconnaissance de scènes d’action ainsi que pour le balisage de données vidéo. Il utilise une analyse de la variable indépendante pour apprendre les caractéristiques spatio-temporelles invariantes à partir de données vidéo. Cette approche aide à extraire des fonctionnalités utiles pour effectuer des tâches discriminantes sur des données d’image et vidéo.

Le deep learning a réussi à produire des résultats remarquables dans l’extraction de fonctionnalités utiles. Cependant, il reste encore un travail considérable à faire pour une exploration plus approfondie qui comprend la détermination d’objectifs appropriés dans l’apprentissage de bonnes représentations de données et l’exécution d’autres tâches complexes dans l’analyse du Big Data.

data-science
Dossier

Qu’est-ce que la data science et quelle est son importance ?

La data science ou science des données est une science appliquée. Elle fait appel à des méthodes et des connaissances issues de nombreux domaines tels que les mathématiques, les statistiques et l’informatique, notamment la programmation informatique. Depuis le début de ce millénaire, la data science est une discipline indépendante.

Il existe des cours spécifiques pour la science des données. Les personnes travaillant dans ce domaine sont connues sous le nom de data scientists ou scientifiques des données. Tout mathématicien, informaticien, programmeur, physicien, économiste d’entreprise ou statisticien qui a acquis ses connaissances en se spécialisant dans les tâches de science des données peut devenir un data scientist.

Le but de la data science est de générer des connaissances à partir de données. Dans l’environnement Big Data, la science des données est utilisée pour analyser des ensembles de données en grandes quantités avec l’apprentissage automatique (machine learning) et l’intelligence artificielle (IA). La science des données est utilisée dans diverses industries et domaines spécialisés.

Les objectifs de la data science

Pour faire simple, les objectifs de la data science sont de :

  • Établir un moteur de recommandation à partir des données clients (sur le site, sur les réseaux sociaux…)

Aujourd’hui, les moteurs de recommandation de produits sont capables de rencontrer un client en temps réel. Par exemple, les magasins qui utilisent les recommandations de produits ont la possibilité de personnaliser chacune de leurs pages. Sur chacune d’elles, ils  proposent des offres qui attirent le client de la page d’accueil à la page de paiement.

  • Fournir une aide à la décision

La prise de décision basée sur les données est définie comme l’utilisation de faits, de mesures et de données. Il est ainsi possible de guider les parties prenantes dans une entreprise à prendre des décisions stratégiques. Lorsqu’une organisation tire pleinement parti de la valeur de ses données, tous ceux qui y travaillent ont la capacité de prendre de meilleures décisions.

  • Optimiser et automatiser les processus internes

Les entreprises cherchent constamment à simplifier les tâches. Elles veulent également réduire les coûts. Cela est possible grâce à la data science. Il peut être aussi optimisé afin de gagner en efficacité et en compétitivité.

  • Soutenir les parties prenantes dans la gestion de l’entreprise

Outre l’aide à la prise de décision, la data science permet de recouper des données pertinentes pour apporter des éléments concrets. Sur ces derniers, les différents responsables d’une entreprise pourront baser leurs actions.

  • De développer des modèles prédictifs

Par le biais de l’analyse prédictive, la data science permet de prédire les événements futurs. En règle générale, les données sont utilisées pour créer un modèle mathématique afin de détecter les tendances les plus importantes. Ce modèle prédictif est ensuite appliqué aux données actuelles pour prédire les événements futurs ou suggérer des mesures à prendre pour obtenir des résultats optimaux.

Les disciplines de la science des données

La data science est une science interdisciplinaire qui utilise et applique des connaissances et des méthodes provenant de divers domaines. Les mathématiques et les statistiques constituent l’essentiel de ces connaissances. Ce sont les bases permettant au data scientist d’évaluer les données, de les interpréter, de décrire les faits ou de faire des prévisions. Dans le cadre de l’analyse prédictive, les statistiques inductives sont souvent utilisées en plus d’autres méthodes statistiques pour anticiper les événements futurs.

Un autre groupe de connaissances appliquées dans la science des données est la technologie de l’information et l’informatique. La technologie de l’information fournit des processus et des systèmes techniques de collecte, d’agrégation, de stockage et d’analyse des données. Les éléments importants dans ce domaine sont les bases de données relationnelles, les langages de requête de bases de données structurées tels que SQL (Structured Query Language), le langage de programmation et de script sur des outils tels que Python et bien plus encore.

En plus des connaissances scientifiques spécifiques, la data science accède à ce que l’on appelle la connaissance de l’entreprise (connaissance du domaine ou savoir-faire de l’entreprise). Elle est nécessaire pour comprendre les processus dans une organisation particulière ou une entreprise d’un secteur spécifique. La connaissance du domaine peut concerner des compétences commerciales : marketing de produits et services, savoir-faire logistique, expertise médicale.

data-science-et-big-data

La relation entre le Big Data et la data science

En raison de l’augmentation continuelle des volumes de données à traiter ou à analyser, le terme Big Data s’est imposé. Le Big Data est au cœur du traitement des données. Il concerne les méthodes, procédures, solutions techniques et systèmes informatiques. Ceux-ci sont capables de faire face au flux de données et au traitement de grandes quantités de données sous la forme souhaitée.

Le Big Data est un domaine important de la data science. La science des données fournit des connaissances et des méthodes pour collecter et stocker de nombreuses données structurées ou non structurées (par exemple dans un data lake ou lac de données), les traiter à l’aide de processus automatisés et les analyser. La science des données utilise, entre autres, l’exploration de données ou data mining, l’apprentissage statistique, l’apprentissage automatique (machine learning), l’apprentissage en profondeur (deep learning) et l’intelligence artificielle (IA).

Le rôle du data scientist dans la data science

Les personnes impliquées dans la science des données sont les scientifiques des données ou data scientists. Ils acquièrent leurs compétences soit en suivant une formation en data science, soit en se spécialisant dans le métier de data scientist.

Les scientifiques des données sont souvent des informaticiens, des mathématiciens ou des statisticiens. Ils sont également des programmeurs, des experts en bases de données ou des physiciens qui ont reçu une formation complémentaire en science des données.

En plus des connaissances spécifiques, un data scientist doit être en mesure de présenter clairement les modèles. Il les génère à partir des données et de les rapprocher de divers groupes cibles. Il doit également avoir des compétences appropriées en communication et en présentation. En effet, un data scientist a un rôle de conseiller ou de consultant auprès de la direction d’une entreprise. Les termes data scientist et data analyst sont souvent confondus dans l’environnement d’une entreprise. Parfois, leurs tâches et domaines d’activité se chevauchent.

L’analyste de données effectue une visualisation de données classique et pratique. De son côté, le data scientist poursuit une approche plus scientifique. Pour ce faire, il utilise des méthodes sophistiquées comme l’utilisation de l’intelligence artificielle ou de l’apprentissage automatique et des techniques avancées d’analyse et de prédiction.

Domaines d’application de la data science

Il n’y a pratiquement pas de limites aux applications possibles de la science des données. L’utilisation de la data science est logique partout où de grandes quantités de données sont générées et que des décisions doivent être prises sur la base de ces données.  La science des données est d’une grande importance dans certains entreprises et activités : santé, logistique, vente au détail en ligne et en magasin, assurance, finance, industrie et manufacturing.

Dossier

Pourquoi Python est-il populaire auprès des data scientists ?

Le langage de programmation de Python Software Foundation est une programmation orientée objet. Lorsque les data scientists parient sur Python pour le traitement des données volumineuses, ils sont conscients qu’il existe d’autres options populaires telles que R, Java ou SAS. Toutefois, Python demeure la meilleure alternative pour ses avantages dans l’analyse du Big Data.

Pourquoi choisir Python ?

Entre R, Java ou Python pour le Big Data, choisir le dernier (en version majeure ou version mineure) est plus facile après avoir lu les 5 arguments suivants :

1.      Simplicité

Python est un langage de programmation interprété connu pour faire fonctionner les programmes avec le moins de chaînes de caractères et de lignes de code. Il identifie et associe automatiquement les types de données. En outre, il est généralement facile à utiliser, ce qui prend moins de temps lors du codage. Il n’y a pas non plus de limitation pour le traitement des données.

2.      Compatibilité

Hadoop est la plateforme Big Data open source la plus populaire. La prise en charge inhérente à Python, peu importe la version du langage, est une autre raison de la préférer.

3.      Facilité d’apprentissage

Comparé à d’autres langages, le langage de programmation de Guido Van Rossum est facile à apprendre même pour les programmeurs moins expérimentés. C’est le langage de programmation idéal pour trois raisons. Premièrement, elle dispose de vastes ressources d’apprentissage. Deuxièmement, elle garantit un code lisible. Et troisièmement, elle s’entoure d’une grande communauté. Tout cela se traduit par une courbe d’apprentissage progressive avec l’application directe de concepts dans des programmes du monde réel. La grande communauté Python assure que si un utilisateur rencontre des problèmes de développement, il y en aura d’autres qui pourront lui prêter main-forte pour les résoudre.

4.      Visualisation de données

Bien que R soit meilleur pour la visualisation des données, avec les packages récents, Python pour le Big Data a amélioré son offre sur ce domaine. Il existe désormais des API qui peuvent fournir de bons résultats.

5.      Bibliothèques riches

Python dispose d’un ensemble de bibliothèques riche. Grâce à cela, il est possible de faire des mises à jour pour un large éventail de besoins en matière de science des données et d’analyse. Certains de ces modules populaires apportent à ce langage une longueur d’avance : NumPy, Pandas, Scikit-learn, PyBrain, Cython, PyMySQL et iPython.

Que sont les bibliothèques en Python ?

La polyvalence de toutes les versions de Python pour développer plusieurs applications est ce qui a poussé son usage au-delà de celui des développeurs. En effet, il a attiré l’intérêt de groupes de recherche de différentes universités du monde entier. Il leur ont permis de développer des librairies pour toutes sortes de domaines : application web, biologie, physique, mathématiques et ingénierie. Ces bibliothèques sont constituées de modules qui ont un grand nombre de fonctions, d’outils et d’algorithmes. Ils permettent d’économiser beaucoup de temps de programmation et ont une structure facile à comprendre.

Le programme Python est considéré comme le langage de programmation pour le développement de logiciels, de pages Web, d’applications de bureau ou mobiles. Mais, il est également le meilleur pour le développement d’outils scientifiques. Par conséquent, les data scientists sont destinés à aller de pair avec Python pour développer tous leurs projets sur le Big Data.

Python et la data science

La data science est chargée d’analyser, de transformer les données et d’extraire des informations utiles pour la prise de décision. Et il n’y a pas besoin d’avoir des connaissances avancées en programmation pour utiliser Python afin d’effectuer ces tâches. La programmation et la visualisation des résultats sont plus simples. Il y a peu de lignes de code en Python et ses interfaces graphiques de programmation sont conviviales.

Dans le développement d’un projet de science des données, il existe différentes tâches pour terminer ledit projet, dont les plus pertinentes sont l’extraction de données, le traitement de l’information, le développement d’algorithmes (machine learning) et l’évaluation des résultats.

illustration abstraite du machine learning
Définitions

Qu’est-ce que le Machine Learning ?

Comment définir le Machine learning ?

Le Machine learning est un type d’intelligence artificielle (IA) qui permet aux ordinateurs d’apprendre sans être explicitement programmés. Il se concentre sur le développement de programmes informatiques qui peuvent changer lorsqu’ils sont exposés à de nouvelles données.
Le processus d’apprentissage automatique est similaire à celui de l’exploration de données. Les deux systèmes recherchent dans les données pour trouver des modèles. Cependant, au lieu d’extraire les données pour la compréhension humaine, le Machine learning utilise ces données pour détecter des modèles dans ces données et ajuster les actions du programme en conséquence. Par exemple, Facebook utilise l’apprentissage automatique pour ajuster chaque contenu en fonction du profil d’un utilisateur.

Continue Reading