Search results for

machine learning

Définitions

Machine Learning vs Human Decision Making (Similarités et Différences):

Nous entendons tous parler du terme « Machine Learning », qui peut se décomposer en trois grandes catégories :

  • L’apprentissage supervisé
  • L’apprentissage non supervisé
  • L’apprentissage par renforcement

En apprentissage supervisé, un programme informatique reçoit un ensemble de données qui est étiqueté avec des valeurs de sorties correspondantes, ainsi on pourra alors « s’entrainer » sur ce modèle et une fonction sera déterminée. Cette fonction, ou algorithme pourra par la suite être utilisé sur de nouvelles données afin de prédire leurs valeurs de sorties correspondantes. C’est le cas par exemple de la Régression Linéaire, des Arbres de décisions, SVM (Support Vector Machine)…

En voici une illustration :

 

Pour l’Homme, il s’agit du même principe. De par son expérience, il va mémoriser une grande quantité d’informations et face à une situation, il va pouvoir se remémorer une situation similaire et émettre une conclusion.

Dans l’apprentissage non-supervisé, l’ensemble des données n’a pas de valeurs de sorties spécifiques. Puisqu’il n’y a pas de bonnes réponses à tirer, l’objectif de l’algorithme est donc de trouver lui-même tous les modèles intéressants à partir des données. Certains des exemples bien connus d’apprentissage non supervisé comprennent les algorithmes de Clustering comme KMeans, DB-Scan et de réduction de dimension comme l’ACP (Analyse en Composantes Principales) et les réseaux de neurones.

Chez l’Homme, le principe est le même, certains critères vous nous permettre de différencier ce que se présente sous yeux et donc de déterminer différentes classes.

Dans l’apprentissage par renforcement, les « bonnes réponses » contiennent des récompenses, que l’algorithme doit maximiser en choisissant les actions à prendre.

Essentiellement, l’apprentissage par renforcement consiste à trouver le bon équilibre entre l’exploration et l’exploitation, ou l’exploration ouvre la possibilité de trouver des récompenses plus élevées, ou risque de n’obtenir aucunes récompenses. Les jeux tels que les Dames sont basés sur ce principe.

Le psychologue BF Skinner (1938), a observé le même résultat au cours d’une expérience sur les rats ou un levier offrait une récompense tandis qu’un autre administrait un choc. Le constat est simple, la punition a entrainé une diminution de la pression du levier de choc.

En comparant le Machine Learning à l’apprentissage d’un Humain, on observe donc beaucoup de similitude mais évidemment, il existe encore des différences fondamentales entre les deux :

Bien que les algorithmes d’apprentissage supervisé fournissent un aperçu complet de l’environnement, ils nécessitent une grande quantité de données pour que le modèle soit construit, ce qui peut être un peu lourd en termes de calculs.

A l’inverse, l’Homme a besoin de beaucoup moins de données pour être capable de faire des prédictions notamment en extrapolant les concepts qu’il a en mémoire. Le Machine Learning lui ne pourra pas le faire car les programmes n’interprètent pas des concepts mais des données.

Un autre problème survient quand on parle de sur-apprentissage ou « Overfitting » en anglais, qui se produit lorsque les données d’apprentissage utilisées pour construire un modèle expliquent très voire « trop » bien les données mais ne parviennent pas à faire des prédictions utiles pour de nouvelles données. L’Homme aura donc plus de flexibilité dans son raisonnement alors que les algorithmes de Machine Learning seront eux plus rigides.

En conclusion, le Machine Learning a souvent été comparé au raisonnement Humain, même si les deux ne sont pas exactement les mêmes.

Chez l’Homme, l’apprentissage a été façonné par des processus évolutifs pour devenir ce qu’il est aujourd’hui. Bien que de nombreuses théories ont tenté de d’expliquer ses mécanismes, sa nature dynamique conduit à dire que différentes stratégies peuvent être utilisées simultanément ou séparément, selon la situation. Il est donc difficile de le comparer au Machine Learning. Après tout, le Machine Learning a été programme par les humains… ainsi, de nouveaux concepts verront le jour pour pouvoir sans cesse améliorer nos algorithmes d’apprentissage qui sont déjà très efficace pour la prise de décision sur de large bases de données. Une Machine dotée d’une conscience ne verra sans doute jamais le jour, mais d’ici peu, la capacité de prise de décision des automates supplantera celle des humains dans quasiment tous les domaines

illustration abstraite du machine learning
Définitions

Qu’est-ce que le Machine Learning ?

Comment définir le Machine learning ?

Le Machine learning est un type d’intelligence artificielle (IA) qui permet aux ordinateurs d’apprendre sans être explicitement programmés. Il se concentre sur le développement de programmes informatiques qui peuvent changer lorsqu’ils sont exposés à de nouvelles données.
Le processus d’apprentissage automatique est similaire à celui de l’exploration de données. Les deux systèmes recherchent dans les données pour trouver des modèles. Cependant, au lieu d’extraire les données pour la compréhension humaine, le Machine learning utilise ces données pour détecter des modèles dans ces données et ajuster les actions du programme en conséquence. Par exemple, Facebook utilise l’apprentissage automatique pour ajuster chaque contenu en fonction du profil d’un utilisateur.

Continue Reading

deep-learning
Dossier

Deep learning : Qu’est-ce que c’est ? Comment ça marche ? Quelles sont les applications ?

Nous sommes actuellement à un stade où l’on cherche à ce que les machines soient dotées d’une plus grande intelligence, atteignent une pensée autonome et une grande capacité d’apprentissage. Le deep learning ou apprentissage en profondeur est un concept relativement nouveau allant dans cette perspective. Il est étroitement lié à l’intelligence artificielle (IA) et fait partie des approches algorithmiques d’apprentissage automatique.

Qu’est-ce que le deep learning ?

Le deep learning ou apprentissage profond est défini comme un ensemble d’algorithmes qui se compose d’un réseau de neurones artificiels capables d’apprendre, s’inspirant du réseau de neurones du cerveau humain. En ce sens, il est considéré comme un sous-domaine de l’apprentissage automatique. L’apprentissage profond est lié aux modèles de communication d’un cerveau biologique, ce qui lui permet de structurer et de traiter les informations.

L’une des principales caractéristiques de l’apprentissage profond est qu’il permet d’apprendre à différents niveaux d’abstraction. Autrement dit, l’utilisateur peut hiérarchiser les informations en concepts. De même, une cascade de couches de neurones est utilisée pour l’extraction et la transformation des informations.

Le deep learning peut apprendre de deux manières : l’apprentissage supervisé et l’apprentissage non supervisé. Cela permet au processus d’être beaucoup plus rapide et plus précis. Dans certains cas, l’apprentissage profond est connu sous le nom d’apprentissage neuronal profond ou de réseaux neuronaux profonds. En effet, la définition la plus précise est que l’apprentissage profond imite le fonctionnement du cerveau humain.

Grâce à l’ère du Cloud Computing et du Big Data, le deep learning a connu une croissance significative. Avec lui, un haut niveau de précision a été atteint. Et cela a causé tellement d’étonnements, car il se rapproche chaque jour de la puissance perceptive d’un être humain.

Comment fonctionne le deep learning ?

Le deep learning fonctionne grâce à des réseaux de neurones profonds. Il utilise un grand nombre de processeurs fonctionnant en parallèle.

Les réseaux de neurones sont regroupés en trois couches différentes : couche d’entrée, couche cachée et couche de sortie. La première couche, comme son nom l’indique, reçoit les données d’entrée. Ces informations sont transmises aux couches cachées qui effectuent des calculs mathématiques permettant d’établir de nouvelles entrées. Enfin, la couche de sortie est chargée de fournir un résultat.

Mais, les réseaux de neurones ne fonctionnent pas si on ne tient pas compte de deux facteurs. Le premier est qu’il faut beaucoup de puissance de calcul. Le second fait référence au gigantesque volume de données auquel ils doivent accéder pour s’entraîner.

Pour sa part, les réseaux de neurones artificiels peuvent être entraînés à l’aide d’une technique appelée rétropropagation. Elle consiste à modifier les poids des neurones pour qu’ils donnent un résultat exact. En ce sens, ils sont modifiés en fonction de l’erreur obtenue et de la participation de chaque neurone.

deep-learning-apprentissage-profond

Pour son bon fonctionnement, l’utilisation d’un processeur graphique est également importante. Autrement dit, un GPU dédié est utilisé pour le traitement graphique ou les opérations en virgule flottante. Pour traiter un tel processus, l’ordinateur doit être super puissant afin de pouvoir fonctionner avec un minimum de marge d’erreur.

L’apprentissage en profondeur a permis de produire de meilleurs résultats dans les tâches de perception informatique, car il imite les caractéristiques architecturales du système nerveux. En fait, ces avancées peuvent lui permettre d’intégrer des fonctions telles que la mémoire sémantique, l’attention et le raisonnement. L’objectif est que le niveau d’intelligence artificielle soit équivalent au niveau d’intelligence humain, voire le dépasser grâce à l’innovation technologique.

Quelles sont les applications du deep learning dans l’analyse du Big Data ?

Le deep learning dans l’analyse du Big Data est devenu une priorité de la science des données. On peut en effet identifier trois applications.

Indexation sémantique

La recherche d’informations est une tâche clé de l’analyse du Big Data. Le stockage et la récupération efficaces des informations sont un problème croissant. Les données en grande quantité telles que des textes, des images, des vidéos et des fichiers audio sont collectées dans divers domaines. Par conséquent, les stratégies et solutions qui étaient auparavant utilisées pour le stockage et la récupération d’informations sont remises en question par ce volume massif de données.

L’indexation sémantique s’avère être une technique efficace, car elle facilite la découverte et la compréhension des connaissances. Ainsi, les moteurs de recherche ont la capacité de fonctionner plus rapidement et plus efficacement.

Effectuer des tâches discriminantes

Tout en effectuant des tâches discriminantes dans l’analyse du Big Data, les algorithmes d’apprentissage permettent aux utilisateurs d’extraire des fonctionnalités non linéaires compliquées à partir des données brutes. Il facilite également l’utilisation de modèles linéaires pour effectuer des tâches discriminantes en utilisant les caractéristiques extraites en entrée.

Cette approche présente deux avantages. Premièrement, l’extraction de fonctionnalités avec le deep learning ajoute de la non-linéarité à l’analyse des données, associant ainsi étroitement les tâches discriminantes à l’IA. Deuxièmement, l’application de modèles analytiques linéaires sur les fonctionnalités extraites est plus efficace en termes de calcul. Ces deux avantages sont importants pour le Big Data, car ils permettent d’accomplir des tâches complexes comme la reconnaissance faciale dans les images, la compréhension de millions d’images, etc.

Balisage d’images et de vidéos sémantiques

Les mécanismes d’apprentissage profond peuvent faciliter la segmentation et l’annotation des scènes d’images complexes. Le deep learning peut également être utilisé pour la reconnaissance de scènes d’action ainsi que pour le balisage de données vidéo. Il utilise une analyse de la variable indépendante pour apprendre les caractéristiques spatio-temporelles invariantes à partir de données vidéo. Cette approche aide à extraire des fonctionnalités utiles pour effectuer des tâches discriminantes sur des données d’image et vidéo.

Le deep learning a réussi à produire des résultats remarquables dans l’extraction de fonctionnalités utiles. Cependant, il reste encore un travail considérable à faire pour une exploration plus approfondie qui comprend la détermination d’objectifs appropriés dans l’apprentissage de bonnes représentations de données et l’exécution d’autres tâches complexes dans l’analyse du Big Data.

data-scientist-data-analyst
Dossier

Data Scientist vs Data Analyst : Quelle est la différence ?

De nombreuses divergences d’opinions subsistent concernant les rôles et les compétences autour du Big Data. Cela crée beaucoup de confusions. Par conséquent, beaucoup se posent cette question : qu’est-ce qui distingue un data scientist d’un data analyst ?

De nombreux non-initiés à la data science ont une perception du data scientist comme étant juste un terme enjolivé pour définir le data analyst.

Une raison importante de cette imprécision est le fait que certaines entreprises aient plusieurs façons de définir le rôle de chacun de ces experts. Dans la pratique, les titres des métiers ne reflètent pas toujours fidèlement les activités et responsabilités réelles de chacun. Par exemple, il existe des start-ups qui usent du titre de « data scientist » sur des descriptions de poste plutôt destinées à des data analysts.

En outre, la science des données est un domaine qui n’est qu’à ses balbutiements. Les gens connaissent encore très peu de choses concernant son fonctionnement interne. Ainsi, s’il faut comprendre la différence entre un data analyst et un data scientist, il est tout d’abord important de faire un retour sur l’activité et le rôle de chacun d’eux.

Que fait un data analyst ?

Au quotidien, un data analyst collecte des données, les organise et les utilise pour tirer des conclusions pertinentes. La majorité des entreprises de tous les secteurs peuvent nécessiter et bénéficier du travail d’un data analyst. Il peut s’agir des prestataires de soins de santé ou des magasins de détail. Les analystes de données passent leur temps à développer de nouveaux processus et systèmes pour collecter des données et compiler leurs conclusions pour améliorer les affaires.

Le métier de data analyst consiste à fournir des rapports, examiner les modèles et collaborer avec les parties prenantes dans une organisation. Dans cette tâche, l’un de ses rôles consiste à collaborer avec plusieurs services d’une entreprise, y compris avec les experts en marketing. Il se joint également à ses pairs qui travaillent sur des données comme les développeurs de bases de données et les architectes de données.

Il doit également consolider les données et mettre en place une structure qui permette de les utiliser. C’est l’aspect le plus technique de son rôle, car il consiste à collecter les données elles-mêmes. En effet, il s’agit de la clé du travail des analystes de données. Ils travaillent pour visualiser, analyser et examiner les modèles, les erreurs et les particularités des données afin qu’elles aient de la valeur et puissent être utilisées dans plusieurs domaines.

Suivre une formation Data Analyst

data-analyst-data-scientist

Que fait un data scientist ?

Le data scientist est un innovateur en matière d’apprentissage automatique. Contrairement au data analyst, les problèmes ne sont pas soumis au data scientist avec des questions clairement formulées par les parties prenantes de l’entreprise, mais plutôt avec des questions qui sont déterminées par des approches plus techniques. La solution est développée à l’aide d’un large répertoire de méthodes statistiques basées à la fois sur des données structurées et non structurées. Il n’est pas toujours nécessaire que ces données soient déjà disponibles dans l’entreprise et enregistrées de manière bien structurée.

En effet, le data scientist doit acquérir des connaissances en utilisant des données, c’est-à-dire, il analyse les données dans le but de soutenir d’autres départements. Cela lui implique d’utiliser une gamme d’outils tels que Python pour les langages de programmation de ses algorithmes d’apprentissage automatique, des outils d’exploration de données et même des services cloud scientist qualifié doit être capable de faire beaucoup ou au moins être suffisamment flexible pour s’y habituer rapidement.

Ses besoins en infrastructure d’acquisition, de stockage et d’analyse sont par conséquent plus élevés. En plus des données non structurées, les données volumineuses du Big Data sont également enregistrées et analysées. Cela va généralement au-delà des systèmes traditionnels d’entreposage de données et nécessite de nouvelles approches telles qu’un data lake.

Comparaison des compétences d’un data analyst vs data scientist

Les tâches des data analysts et des data scientist se chevauchent à bien des égards. Cela est en partie dû au fait que tout le domaine professionnel autour du Big Data se développe rapidement et que de nouveaux titres de poste émergent constamment sans pour autant être définis de manière uniforme.

Mais, outre ces quelques similitudes, des différences importantes sont à noter et peuvent être résumées sous les trois questions suivantes :

Qui pose les questions ?

Un data scientist formule les questions pour l’entreprise auxquelles il souhaite répondre avec sa base de données. Un data analyst est en revanche chargé par d’autres équipes de l’entreprise de rechercher une solution à leurs questions.

Quel niveau d’étude pour commencer ?

Un data analyst peut commencer sa carrière avec un baccalauréat à composante scientifique . Un master est généralement exigé de la part d’un data scientist parce qu’il doit maîtriser les maths statistiques et les technologies de l’information.

Quel rôle joue la machine learning ?

Le data analyst doit maîtriser le langage SQL et Oracle Database tout en sachant utiliser les outils de veille stratégique tels que Power BI et de visualisation de données comme Shiny et Google Analytics. De son côté, le data scientist développe ses propres modèles d’apprentissage automatique qui utilisent l’ensemble des données comme base de formation pour apprendre de nouvelles choses. 

data-science
Dossier

Qu’est-ce que la data science et quelle est son importance ?

La data science ou science des données est une science appliquée. Elle fait appel à des méthodes et des connaissances issues de nombreux domaines tels que les mathématiques, les statistiques et l’informatique, notamment la programmation informatique. Depuis le début de ce millénaire, la data science est une discipline indépendante.

Il existe des cours spécifiques pour la science des données. Les personnes travaillant dans ce domaine sont connues sous le nom de data scientists ou scientifiques des données. Tout mathématicien, informaticien, programmeur, physicien, économiste d’entreprise ou statisticien qui a acquis ses connaissances en se spécialisant dans les tâches de science des données peut devenir un data scientist.

Le but de la data science est de générer des connaissances à partir de données. Dans l’environnement Big Data, la science des données est utilisée pour analyser des ensembles de données en grandes quantités avec l’apprentissage automatique (machine learning) et l’intelligence artificielle (IA). La science des données est utilisée dans diverses industries et domaines spécialisés.

Les objectifs de la data science

Pour faire simple, les objectifs de la data science sont de :

  • Établir un moteur de recommandation à partir des données clients (sur le site, sur les réseaux sociaux…)

Aujourd’hui, les moteurs de recommandation de produits sont capables de rencontrer un client en temps réel. Par exemple, les magasins qui utilisent les recommandations de produits ont la possibilité de personnaliser chacune de leurs pages. Sur chacune d’elles, ils  proposent des offres qui attirent le client de la page d’accueil à la page de paiement.

  • Fournir une aide à la décision

La prise de décision basée sur les données est définie comme l’utilisation de faits, de mesures et de données. Il est ainsi possible de guider les parties prenantes dans une entreprise à prendre des décisions stratégiques. Lorsqu’une organisation tire pleinement parti de la valeur de ses données, tous ceux qui y travaillent ont la capacité de prendre de meilleures décisions.

  • Optimiser et automatiser les processus internes

Les entreprises cherchent constamment à simplifier les tâches. Elles veulent également réduire les coûts. Cela est possible grâce à la data science. Il peut être aussi optimisé afin de gagner en efficacité et en compétitivité.

  • Soutenir les parties prenantes dans la gestion de l’entreprise

Outre l’aide à la prise de décision, la data science permet de recouper des données pertinentes pour apporter des éléments concrets. Sur ces derniers, les différents responsables d’une entreprise pourront baser leurs actions.

  • De développer des modèles prédictifs

Par le biais de l’analyse prédictive, la data science permet de prédire les événements futurs. En règle générale, les données sont utilisées pour créer un modèle mathématique afin de détecter les tendances les plus importantes. Ce modèle prédictif est ensuite appliqué aux données actuelles pour prédire les événements futurs ou suggérer des mesures à prendre pour obtenir des résultats optimaux.

Les disciplines de la science des données

La data science est une science interdisciplinaire qui utilise et applique des connaissances et des méthodes provenant de divers domaines. Les mathématiques et les statistiques constituent l’essentiel de ces connaissances. Ce sont les bases permettant au data scientist d’évaluer les données, de les interpréter, de décrire les faits ou de faire des prévisions. Dans le cadre de l’analyse prédictive, les statistiques inductives sont souvent utilisées en plus d’autres méthodes statistiques pour anticiper les événements futurs.

Un autre groupe de connaissances appliquées dans la science des données est la technologie de l’information et l’informatique. La technologie de l’information fournit des processus et des systèmes techniques de collecte, d’agrégation, de stockage et d’analyse des données. Les éléments importants dans ce domaine sont les bases de données relationnelles, les langages de requête de bases de données structurées tels que SQL (Structured Query Language), le langage de programmation et de script sur des outils tels que Python et bien plus encore.

En plus des connaissances scientifiques spécifiques, la data science accède à ce que l’on appelle la connaissance de l’entreprise (connaissance du domaine ou savoir-faire de l’entreprise). Elle est nécessaire pour comprendre les processus dans une organisation particulière ou une entreprise d’un secteur spécifique. La connaissance du domaine peut concerner des compétences commerciales : marketing de produits et services, savoir-faire logistique, expertise médicale.

data-science-et-big-data

La relation entre le Big Data et la data science

En raison de l’augmentation continuelle des volumes de données à traiter ou à analyser, le terme Big Data s’est imposé. Le Big Data est au cœur du traitement des données. Il concerne les méthodes, procédures, solutions techniques et systèmes informatiques. Ceux-ci sont capables de faire face au flux de données et au traitement de grandes quantités de données sous la forme souhaitée.

Le Big Data est un domaine important de la data science. La science des données fournit des connaissances et des méthodes pour collecter et stocker de nombreuses données structurées ou non structurées (par exemple dans un data lake ou lac de données), les traiter à l’aide de processus automatisés et les analyser. La science des données utilise, entre autres, l’exploration de données ou data mining, l’apprentissage statistique, l’apprentissage automatique (machine learning), l’apprentissage en profondeur (deep learning) et l’intelligence artificielle (IA).

Le rôle du data scientist dans la data science

Les personnes impliquées dans la science des données sont les scientifiques des données ou data scientists. Ils acquièrent leurs compétences soit en suivant une formation en data science, soit en se spécialisant dans le métier de data scientist.

Les scientifiques des données sont souvent des informaticiens, des mathématiciens ou des statisticiens. Ils sont également des programmeurs, des experts en bases de données ou des physiciens qui ont reçu une formation complémentaire en science des données.

En plus des connaissances spécifiques, un data scientist doit être en mesure de présenter clairement les modèles. Il les génère à partir des données et de les rapprocher de divers groupes cibles. Il doit également avoir des compétences appropriées en communication et en présentation. En effet, un data scientist a un rôle de conseiller ou de consultant auprès de la direction d’une entreprise. Les termes data scientist et data analyst sont souvent confondus dans l’environnement d’une entreprise. Parfois, leurs tâches et domaines d’activité se chevauchent.

L’analyste de données effectue une visualisation de données classique et pratique. De son côté, le data scientist poursuit une approche plus scientifique. Pour ce faire, il utilise des méthodes sophistiquées comme l’utilisation de l’intelligence artificielle ou de l’apprentissage automatique et des techniques avancées d’analyse et de prédiction.

Domaines d’application de la data science

Il n’y a pratiquement pas de limites aux applications possibles de la science des données. L’utilisation de la data science est logique partout où de grandes quantités de données sont générées et que des décisions doivent être prises sur la base de ces données.  La science des données est d’une grande importance dans certains entreprises et activités : santé, logistique, vente au détail en ligne et en magasin, assurance, finance, industrie et manufacturing.

Conseils

Pourquoi faut-il maîtriser les notions clés de Data Science ?

article rédigé par David Sitbon, Data Analyst Indépendant
dsconsult.contact@gmail.com / 06.25.60.59.61

Avec l’essor des technologies numériques, la collecte et la gestion de données sont devenues des enjeux économiques stratégiques pour de nombreuses entreprises. Ces pratiques ont engendrées la naissance d’un tout nouveau secteur et de nouveaux emplois : la Data science

IBM prévoyait une hausse de 28 % de la demande de profil Data Scientist en 2020. En effet, de nombreuses entreprises ont compris l’importance stratégique de l’exploitation de la donnée. La Data science étant au cœur de la chaîne d’exploitation de la donnée, cela explique la hausse de la demande des profils compétents dans ce domaine.

Tour d’horizon de la Data science 

La Data science, ou science de la donnée, est le processus qui consiste à utiliser des algorithmes, des méthodes et des systèmes pour extraire des informations stratégiques à l’aide des données disponibles. Elle utilise l’analyse des données et le machine learning (soit l’utilisation d’algorithmes permettant à des programmes informatiques de s’améliorer automatiquement par le biais de l’expérience) pour aider les utilisateurs à faire des prévisions, à renforcer l’optimisation, ou encore à améliorer les opérations et la prise de décision.

Les équipes actuelles de professionnels de la science de la donnée sont censées répondre à de nombreuses questions. Leur entreprise exige, le plus souvent, une meilleure prévision et une optimisation basée sur des informations en temps réel appuyées par des outils spécifiques.

La science de la donnée est donc un domaine interdisciplinaire qui connaît une évolution rapide. De nombreuses entreprises ont largement adopté les méthodes de machine learning et d’intelligence artificielle (soit l’ensemble des techniques mises en œuvre en vue de réaliser des machines capables de simuler l’intelligence humaine) pour alimenter de nombreuses applications. Les systèmes et l’ingénierie des données font inévitablement partie de toutes ces applications et décisions à grande échelle axées sur les données. Cela est dû au fait que les méthodes citées plus tôt sont alimentées par des collections massives d’ensembles de données potentiellement hétérogènes et désordonnées et qui, à ce titre, doivent être gérés et manipulés dans le cadre du cycle de vie global des données d’une organisation.

Ce cycle de vie global en data science commence par la collecte de données à partir de sources pertinentes, le nettoyage et la mise en forme de celles-ci dans des formats que les outils peuvent comprendre. Au cours de la phase suivante, des méthodes statistiques et d’autres algorithmes sont utilisés pour trouver des modèles et des tendances. Les modèles sont ensuite programmés et créés pour prédire et prévoir. Enfin, les résultats sont interprétés.

Pourquoi choisir l’organisme DataScientest pour se former en Data science ?

Vous êtes maintenant convaincu de l’importance de la maîtrise de la Data science pour renforcer votre profil employable et pour aider votre entreprise.

Les formations en Data Science de l’organisme DataScientest  sont conçues pour former et familiariser les professionnels avec les technologies clés dans ce domaine, dans le but de leur permettre de profiter pleinement des opportunités offertes par la science de la donnée et de devenir des acteurs actifs dans ce domaine de compétences au sein de leurs organisations. 

Ces formations, co-certifiées par la Sorbonne, ont pour ambition de permettre, à toute personne souhaitant valoriser la manne de données mise actuellement à sa disposition, d’acquérir un véritable savoir-faire opérationnel et une très bonne maîtrise des techniques d’analyse de données et des outils informatiques nécessaires.

L’objectif que se fixe DataScientest est de vous sensibiliser en tant que futurs décideurs des projets data, aux fortes problématiques des données à la fois sous l’angle technique (collecte, intégration, modélisation, visualisation) et sous l’angle managérial avec une compréhension globale des enjeux.

Pourquoi choisir la formule « formation continue » chez Datascientest ? 

Pendant 6 mois, vous serez formés à devenir un(e) expert(e) en data science, en maîtrisant les fondements théoriques, les bonnes pratiques de programmation et les enjeux des projets de data science.

Vous serez capable d’accompagner toutes les étapes d’un projet de data science, depuis l’analyse exploratoire et la visualisation de données à l’industrialisation d’outils d’intelligence artificielle (IA) et de machine learning, en faisant des choix éclairés d’approches, de pratiques, d’outils et de technologies, avec une vision globale : data science, data analyse, data management et machine learning. Vous pourrez cibler les secteurs extrêmement demandés de la data science.

Ce type de formation vous permettra d’acquérir les connaissances et les compétences nécessaires pour devenir data analyst, data scientist, data engineer, ou encore data manager. En effet, elles couvrent les principaux axes de la science de la donnée.

Autonomie et gestion de son temps 

Que votre souhait de vous former en data science provienne d’une initiative personnelle ou qu’il soit motivé par votre entreprise, si la data science est un domaine totalement nouveau pour vous, il conviendrait de vous orienter vers le format « formation continue » de DataScientest. Effectivement, cela vous permettra de consacrer le temps qu’il vous faut pour appréhender au mieux toutes les notions enseignées. Sur une période de 6 mois, à partir de votre inscription (il y a une rentrée par mois), vous pourrez gérer votre temps comme bon vous semble, sans contrainte, que vous ayez une autre activité ou non. 

Aussi, pour de nombreux salariés, il est difficile de bloquer plusieurs jours par semaine pour se former. C’est pourquoi, de plus en plus d’entreprises sollicitent des formations en ligne, à distance, pour plus d’efficacité ; vous aurez la possibilité de gérer votre temps de manière à adapter au mieux vos besoins d’apprentissage avec votre temps disponible. 

Profiter de l’expertise de dizaines de data scientists 

La start-up a déjà formé plus de 1500 professionnels actifs et étudiants aux métiers de Data Analysts et Data Scientists et conçu plus de 2 000 heures de cours de tout niveau, de l’acquisition de données à la mise en production. 

” Notre offre répond aux besoins des entreprises, justifie Yoel Tordjman,  CEO de Datascientest. Elle s’effectue surtout à distance, ce qui permet de la déployer sur différents sites à moindre coût, et de s’adapter aux disponibilités de chacun, avec néanmoins un coaching, d’abord collectif, puis par projet, dans le but d’atteindre un taux de complétion de 100 %.  “

S’exercer concrètement avec un projet fil-rouge

Tout au long de votre formation et au fur et à mesure que vos compétences se développent, vous allez mener un projet de Data Science nécessitant un investissement d’environ 80 heures parallèlement à votre formation. Ce sera votre projet ! En effet, ce sera à vous de déterminer le sujet et de le présenter à nos équipes. Cela vous permettra de passer efficacement de la théorie à la pratique et de s’assurer que vous appliquez les thèmes abordés en cours. C’est aussi un projet fortement apprécié des entreprises, car il confirme vos compétences et connaissances acquises à l’issue de votre formation en Data Science. Vous ne serez jamais seul parce que nos professeurs seront toujours à vos côtés et disponibles en cas de besoin ; nous vous attribuons un tuteur pour votre projet parmi nos experts en data science.  

Datascientest – Une solution de formation clé-en-main pour faciliter votre apprentissage et votre quotidien au travail 

Passionné(e) par le Big Data et l’intelligence artificielle ?  : 

 

Devenez expert(e) en Data Science et intégrez le secteur le plus recherché par les entreprises. Une fois diplômé, vous pourrez commencer votre carrière en répondant parfaitement aux besoins des entreprises qui font face à une profusion et multiplication de données.

Vous souhaitez échanger avec Datascientest France autour de votre projet ? 

Leader français de la formation en Data Science. Datascientest offre un apprentissage d’excellence orienté emploi pour professionnels et particuliers, avec un taux de satisfaction de 94 %.

Pour plus d’informations, n’hésitez pas à contacter DataScientest : 

contact@datascientest.com

+33 9 80 80 79 49 

Dossier

Pourquoi Python est-il populaire auprès des data scientists ?

Le langage de programmation de Python Software Foundation est une programmation orientée objet. Lorsque les data scientists parient sur Python pour le traitement des données volumineuses, ils sont conscients qu’il existe d’autres options populaires telles que R, Java ou SAS. Toutefois, Python demeure la meilleure alternative pour ses avantages dans l’analyse du Big Data.

Pourquoi choisir Python ?

Entre R, Java ou Python pour le Big Data, choisir le dernier (en version majeure ou version mineure) est plus facile après avoir lu les 5 arguments suivants :

1.      Simplicité

Python est un langage de programmation interprété connu pour faire fonctionner les programmes avec le moins de chaînes de caractères et de lignes de code. Il identifie et associe automatiquement les types de données. En outre, il est généralement facile à utiliser, ce qui prend moins de temps lors du codage. Il n’y a pas non plus de limitation pour le traitement des données.

2.      Compatibilité

Hadoop est la plateforme Big Data open source la plus populaire. La prise en charge inhérente à Python, peu importe la version du langage, est une autre raison de la préférer.

3.      Facilité d’apprentissage

Comparé à d’autres langages, le langage de programmation de Guido Van Rossum est facile à apprendre même pour les programmeurs moins expérimentés. C’est le langage de programmation idéal pour trois raisons. Premièrement, elle dispose de vastes ressources d’apprentissage. Deuxièmement, elle garantit un code lisible. Et troisièmement, elle s’entoure d’une grande communauté. Tout cela se traduit par une courbe d’apprentissage progressive avec l’application directe de concepts dans des programmes du monde réel. La grande communauté Python assure que si un utilisateur rencontre des problèmes de développement, il y en aura d’autres qui pourront lui prêter main-forte pour les résoudre.

4.      Visualisation de données

Bien que R soit meilleur pour la visualisation des données, avec les packages récents, Python pour le Big Data a amélioré son offre sur ce domaine. Il existe désormais des API qui peuvent fournir de bons résultats.

5.      Bibliothèques riches

Python dispose d’un ensemble de bibliothèques riche. Grâce à cela, il est possible de faire des mises à jour pour un large éventail de besoins en matière de science des données et d’analyse. Certains de ces modules populaires apportent à ce langage une longueur d’avance : NumPy, Pandas, Scikit-learn, PyBrain, Cython, PyMySQL et iPython.

Que sont les bibliothèques en Python ?

La polyvalence de toutes les versions de Python pour développer plusieurs applications est ce qui a poussé son usage au-delà de celui des développeurs. En effet, il a attiré l’intérêt de groupes de recherche de différentes universités du monde entier. Il leur ont permis de développer des librairies pour toutes sortes de domaines : application web, biologie, physique, mathématiques et ingénierie. Ces bibliothèques sont constituées de modules qui ont un grand nombre de fonctions, d’outils et d’algorithmes. Ils permettent d’économiser beaucoup de temps de programmation et ont une structure facile à comprendre.

Le programme Python est considéré comme le langage de programmation pour le développement de logiciels, de pages Web, d’applications de bureau ou mobiles. Mais, il est également le meilleur pour le développement d’outils scientifiques. Par conséquent, les data scientists sont destinés à aller de pair avec Python pour développer tous leurs projets sur le Big Data.

Python et la data science

La data science est chargée d’analyser, de transformer les données et d’extraire des informations utiles pour la prise de décision. Et il n’y a pas besoin d’avoir des connaissances avancées en programmation pour utiliser Python afin d’effectuer ces tâches. La programmation et la visualisation des résultats sont plus simples. Il y a peu de lignes de code en Python et ses interfaces graphiques de programmation sont conviviales.

Dans le développement d’un projet de science des données, il existe différentes tâches pour terminer ledit projet, dont les plus pertinentes sont l’extraction de données, le traitement de l’information, le développement d’algorithmes (machine learning) et l’évaluation des résultats.

Définitions

Computer Vision : définition, fonctionnement, cas d’usage, formations

La Computer Vision ou vision par ordinateur est une technologie d’intelligence artificielle permettant aux machines d’imiter la vision humaine. Découvrez tout ce que vous devez savoir : définition, fonctionnement, histoire, applications, formations…

Depuis maintenant plusieurs années, nous sommes entrés dans l’ère de l’image. Nos smartphones sont équipés de caméras haute définition, et nous capturons sans cesse des photos et des vidéos que nous partageons au monde entier sur les réseaux sociaux.

Les services d’hébergement vidéo comme YouTube connaissent une popularité explosive, et des centaines d’heures de vidéo sont mises en ligne et visionnées chaque minute. Ainsi, l’internet est désormais composé aussi bien de texte que d’images.

Toutefois, s’il est relativement simple d’indexer les textes et de les explorer avec des moteurs de recherche tels que Google, la tâche est bien plus difficile en ce qui concerne les images. Pour les indexer et permettre de les parcourir, les algorithmes ont besoin de connaître leur contenu.

Pendant très longtemps, la seule façon de présenter le contenu d’une image aux ordinateurs était de renseigner sa méta-description lors de la mise en ligne. Désormais, grâce à la technologie de ” vision par ordinateur ” (Computer Vision), les machines sont en mesure de ” voir “ les images et de comprendre leur contenu.

Qu’est ce que la vision par ordinateur ?

La Computer Vision peut être décrite comme un domaine de recherche ayant pour but de permettre aux ordinateurs de voir. De façon concrète, l’idée est de transmettre à une machine des informations sur le monde réel à partir des données d’une image observée.

Pour le cerveau humain, la vision est naturelle. Même un enfant est capable de décrire le contenu d’une photo, de résumer une vidéo ou de reconnaître un visage après les avoir vus une seule fois. Le but de la vision par ordinateur est de transmettre cette capacité humaine aux ordinateurs.

Il s’agit d’un vaste champ pluridisciplinaire, pouvant être considéré comme une branche de l’intelligence artificielle et du Machine Learning. Toutefois, il est aussi possible d’utiliser des méthodes spécialisées et des algorithmes d’apprentissage général n’étant pas nécessairement liés à l’intelligence artificielle.

De nombreuses techniques en provenance de différents domaines de science et d’ingénierie peuvent être exploitées. Certaines tâches de vision peuvent être accomplies à l’aide d’une méthode statistique relativement simple, d’autres nécessiteront de vastes ensembles d’algorithmes de Machine Learning complexes.

 

 

L’histoire de la Computer Vision

En 1966, les pionniers de l’intelligence artificielle Seymour Papert et Marvin Minsky lance le Summer Vision Project : une initiative de deux mois, rassemblant 10 hommes dans le but de créer un ordinateur capable d’identifier les objets dans des images.

Pour atteindre cet objectif, il était nécessaire de créer un logiciel capable de reconnaître un objet à partir des pixels qui le composent. À l’époque, l’IA symbolique – ou IA basée sur les règles – était la branche prédominante de l’intelligence artificielle.

Les programmeurs informatiques devaient spécifier manuellement les règles de détection d’objets dans les images. Or, cette approche pose problème puisque les objets dans les images peuvent apparaître sous différents angles et différents éclairages. Ils peuvent aussi être altérés par l’arrière-plan, ou obstrués par d’autres objets.

Les valeurs de pixels variaient donc fortement en fonction de nombreux facteurs, et il était tout simplement impossible de créer des règles manuellement pour chaque situation possible. Ce projet se heurta donc aux limites techniques de l’époque.

Quelques années plus tard, en 1979, le scientifique japonais Kunihiko Fukushima créa un système de vision par ordinateur appelé ” neocognitron “ en se basant sur les études neuroscientifiques menées sur le cortex visuel humain. Même si ce système échoua à effectuer des tâches visuelles complexes, il posa les bases de l’avancée la plus importante dans le domaine de la Computer Vision…

La révolution du Deep Learning

La Computer Vision n’est pas une nouveauté, mais ce domaine scientifique a récemment pris son envol grâce aux progrès effectués dans les technologies d’intelligence artificielle, de Deep Learning et de réseaux de neurones.

Dans les années 1980, le Français Yan LeCun crée le premier réseau de neurones convolutif : une IA inspirée par le neocognitron de Kunihiko Fukushima. Ce réseau est composé de multiples couches de neurones artificiels, des composants mathématiques imitant le fonctionnement de neurones biologiques.

Lorsqu’un réseau de neurones traite une image, chacune de ses couches extrait des caractéristiques spécifiques à partir des pixels. La première couche détectera les éléments les plus basiques, comme les bordures verticales et horizontales.

À mesure que l’on s’enfonce en profondeur dans ce réseau, les couches détectent des caractéristiques plus complexes comme les angles et les formes. Les couches finales détectent les éléments spécifiques comme les visages, les portes, les voitures. Le réseau produit enfin un résultat sous forme de tableau de valeurs numériques, représentant les probabilités qu’un objet spécifique soit découvert dans l’image.

L’invention de Yann LeCun est brillante, et a ouvert de nouvelles possibilités. Toutefois, son réseau de neurones était restreint par d’importantes contraintes techniques. Il était nécessaire d’utiliser d’immenses volumes de données et des ressources de calcul titanesques pour le configurer et l’utiliser. Or, ces ressources n’étaient tout simplement pas disponibles à cette époque.

Dans un premier temps, les réseaux de neurones convolutifs furent donc limités à une utilisation dans les domaines tels que les banques et les services postaux pour traiter des chiffres et des lettres manuscrites sur les enveloppes et les chèques.

Il a fallu attendre 2012 pour que des chercheurs en IA de Toronto développent le réseau de neurones convolutif AlexNet et triomphent de la compétition ImageNet dédiée à la reconnaissance d’image. Ce réseau a démontré que l’explosion du volume de données et l’augmentation de puissance de calcul des ordinateurs permettaient enfin d’appliquer les ” neural networks ” à la vision par ordinateur.

Ce réseau de neurones amorça la révolution du Deep Learning : une branche du Machine Learning impliquant l’utilisation de réseaux de neurones à multiples couches. Ces avancées ont permis de réaliser des bonds de géants dans le domaine de la Computer Vision. Désormais, les machines sont même en mesure de surpasser les humains pour certaines tâches de détection et d’étiquetage d’images.

 

Comment fonctionne la vision par ordinateur

Les algorithmes de vision par ordinateur sont basés sur la ” reconnaissance de motifs “. Les ordinateurs sont entraînés sur de vastes quantités de données visuelles. Ils traitent les images, étiquettent les objets, et trouvent des motifs (patterns) dans ces objets.

Par exemple, si l’on nourrit une machine avec un million de photos de fleurs, elle les analysera et détectera des motifs communs à toutes les fleurs. Elle créera ensuite un modèle, et sera capable par la suite de reconnaître une fleur chaque fois qu’elle verra une image en comportant une.

Les algorithmes de vision par ordinateur reposent sur les réseaux de neurones, censés imiter le fonctionnement du cerveau humain. Or, nous ne savons pas encore exactement comment le cerveau et les yeux traitent les images. Il est donc difficile de savoir à quel point les algorithmes de Computer Vision miment ce processus biologique.

Les machines interprètent les images de façon très simple. Elles les perçoivent comme des séries de pixels, avec chacun son propre ensemble de valeurs numériques correspondant aux couleurs. Une image est donc perçue comme une grille constituée de pixels, chacun pouvant être représenté par un nombre généralement compris entre 0 et 255.

Bien évidemment, les choses se compliquent pour les images en couleur. Les ordinateurs lisent les couleurs comme des séries de trois valeurs : rouge, vert et bleu. Là encore, l’échelle s’étend de 0 à 255. Ainsi, chaque pixel d’une image en couleur à trois valeurs que l’ordinateur doit enregistrer en plus de sa position.

Chaque valeur de couleur est stockée en 8 bits. Ce chiffre est multiplié par trois pour une image en couleurs, ce qui équivaut à 24 bits par pixel. Pour une image de 1024×768 pixels, il faut donc compter 24 bits par pixels soit presque 19 millions de bits ou 2,36 mégabytes.

Vous l’aurez compris : il faut beaucoup de mémoire pour stocker une image. L’algorithme de Computer Vision quant à lui doit parcourir un grand nombre de pixels pour chaque image. Or, il faut généralement plusieurs dizaines de milliers d’images pour entraîner un modèle de Deep Learning.

C’est la raison pour laquelle la vision par ordinateur est une discipline complexe, nécessitant une puissance de calcul et une capacité de stockage colossales pour l’entraînement des modèles. Voilà pourquoi il a fallu attendre de nombreuses années pour que l’informatique se développe et permette à la Computer Vision de prendre son envol.

 

Les différentes applications de Computer Vision

La vision par ordinateur englobe toutes les tâches de calcul impliquant le contenu visuel telles que les images, les vidéos ou même les icônes. Cependant, il existe de nombreuses branches dans cette vaste discipline.

La classification d’objet consiste à entraîner un modèle sur un ensemble de données d’objets spécifiques, afin de lui apprendre à classer de nouveaux objets dans différentes catégories. L’identification d’objet quant à elle vise à entraîner un modèle à reconnaître un objet.

Parmi les applications les plus courantes de vision par ordinateur, on peut citer la reconnaissance d’écriture manuscrite. Un autre exemple est l’analyse de mouvement vidéo, permettant d’estimer la vélocité des objets dans une vidéo ou directement sur la caméra.

Dans la segmentation d’image, les algorithmes répartissent les images dans plusieurs ensembles de vues. La reconstruction de scène permet de créer un modèle 3D d’une scène à partir d’images et de vidéos.

Enfin, la restauration d’image exploite le Machine Learning pour supprimer le ” bruit ” (grain, flou…) sur des photos. De manière générale, toute application impliquant la compréhension des pixels par un logiciel peut être associée à la Computer Vision.

 

Quels sont les cas d’usages de la Computer Vision ?

La Computer Vision fait partie des applications du Machine Learning que nous utilisons déjà au quotidien, parfois sans même le savoir. Par exemple, les algorithmes de Google parcourent des cartes pour en extraire de précieuses données et identifier les noms de rues, les commerces ou les bureaux d’entreprises.

De son côté, Facebook exploite la vision par ordinateur afin d’identifier les personnes sur les photos. Sur les réseaux sociaux, elle permet aussi de détecter automatiquement le contenu problématique pour le censurer immédiatement.

Les voitures autonomes

Les entreprises de la technologie sont loin d’être les seules à se tourner vers cette technologie. Ainsi, le constructeur automobile Ford utilise la Computer Vision pour développer ses futurs véhicules autonomes. Ces derniers reposent sur l’analyse en temps réel de nombreux flux vidéo capturés par la voiture et ses caméras.

Il en va de même pour tous les systèmes de voitures sans pilote comme ceux de Tesla ou Nvidia. Les caméras de ces véhicules capturent des vidéos sous différents angles et s’en servent pour nourrir le logiciel de vision par ordinateur.

Ce dernier traite les images en temps réel pour identifier les bordures des routes, lire les panneaux de signalisation, détecter les autres voitures, les objets et les piétons. Ainsi, le véhicule est en mesure de conduire sur autoroute et même en agglomération, d’éviter les obstacles et de conduire les passagers jusqu’à leur destination.

 

La santé

Dans le domaine de la santé, la Computer Vision connaît aussi un véritable essor. La plupart des diagnostics sont basés sur le traitement d’image : lecture de radiographies, scans IRM…

Google s’est associé avec des équipes de recherche médicale pour automatiser l’analyse de ces imageries grâce au Deep Learning. D’importants progrès ont été réalisés dans ce domaine. Désormais, les IA de Computer Vision se révèlent plus performantes que les humains pour détecter certaines maladies comme la rétinopathie diabétique ou divers cancers.

Le sport

Dans le domaine du sport, la vision par ordinateur apporte une précieuse assistance. Par exemple, la Major League Baseball utilise une IA pour suivre la balle avec précision. De même, la startup londonienne Hawk-Eye déploie son système de suivi de balle dans plus de 20 sports comme le basketball, le tennis ou le football.

La reconnaissance faciale

Une autre technologie reposant sur la Computer Vision est la reconnaissance faciale. Grâce à l’IA, les caméras sont en mesure de distinguer et de reconnaître les visages. Les algorithmes détectent les caractéristiques faciales dans les images, et les comparent avec des bases de données regroupant de nombreux visages.

Cette technologie est utilisée sur des appareils grand public comme les smartphones pour authentifier l’utilisateur. Elle est aussi exploitée par les réseaux sociaux pour détecter et identifier les personnes sur les photos. De leur côté, les autorités s’en servent pour identifier les criminels dans les flux vidéo.

La réalité virtuelle et augmentée

Les nouvelles technologies de réalité virtuelle et augmentée reposent également sur la Computer Vision. C’est elle qui permet aux lunettes de réalité augmentée de détecter les objets dans le monde réel et de scanner l’environnement afin de pouvoir y disposer des objets virtuels.

Par exemple, les algorithmes peuvent permettre aux applications AR de détecter des surfaces planes comme des tables, des murs ou des sols. C’est ce qui permet de mesurer la profondeur et les dimensions de l’environnement réel pour pouvoir y intégrer des éléments virtuels.

Les limites et problèmes de la Computer Vision

La vision par ordinateur présente encore des limites. En réalité, les algorithmes se contentent d’associer des pixels. Ils ne ” comprennent ” pas véritablement le contenu des images à la manière du cerveau humain.

Pour cause, comprendre les relations entre les personnes et les objets sur des images nécessite un sens commun et une connaissance du contexte. C’est précisément pourquoi les algorithmes chargés de modérer le contenu sur les réseaux sociaux ne peuvent faire la différence entre la pornographie et une nudité plus candide comme les photos d’allaitement ou les peintures de la Renaissance.

Alors que les humains exploitent leur connaissance du monde réel pour déchiffrer des situations inconnues, les ordinateurs en sont incapables. Ils ont encore besoin de recevoir des instructions précises, et si des éléments inconnus se présentent à eux, les algorithmes dérapent. Un véhicule autonome sera par exemple pris de cours face à un véhicule d’urgence garé de façon incongrue.

Même en entraînant une IA avec toutes les données disponibles, il est en réalité impossible de la préparer à toutes les situations possibles. La seule façon de surmonter cette limite serait de parvenir à créer une intelligence artificielle générale, à savoir une IA véritablement similaire au cerveau humain.

Comment se former à la Computer Vision ?

Si vous êtes intéressé par la Computer Vision et ses multiples applications, vous devez vous former à l’intelligence artificielle, au Machine Learning et au Deep Learning. Vous pouvez opter pour les formations DataScientest.

Le Machine Learning et le Deep Learning sont au coeur de nos formations Data Scientist et Data Analyst. Vous apprendrez à connaître et à manier les différents algorithmes et méthodes de Machine Learning, et les outils de Deep Learning comme les réseaux de neurones, les GANs, TensorFlow et Keras.

Ces formations vous permettront aussi d’acquérir toutes les compétences nécessaires pour exercer les métiers de Data Scientist et de Data Analyst. À travers les différents modules, vous pourrez devenir expert en programmation, en Big Data et en visualisation de données.

Nos différentes formations adoptent une approche innovante de Blended Learning, alliant le présentiel au distanciel pour profiter du meilleur des deux mondes. Elles peuvent être effectuées en Formation Continue, ou en BootCamp.

Pour le financement, ces parcours sont éligibles au CPF et peuvent être financés par Pôle Emploi via l’AIF. À l’issue du cursus, les apprenants reçoivent un diplôme certifié par l’Université de la Sorbonne. Parmi nos alumnis, 93% trouvent un emploi immédiatement après l’obtention du diplôme. N’attendez plus, et découvrez nos formations.

Vous savez tout sur la Computer Vision. Découvrez tout ce que vous devez savoir sur le Text Mining, et les différents algorithmes de Machine Learning.

Définitions

Apprentissage supervisé : Définition et explications

L’apprentissage supervisé, dans le contexte de l’intelligence artificielle, est la méthode d’apprentissage la plus utilisée en Machine Learning et en Deep Learning. L’apprentissage supervisé consiste à surveiller l’apprentissage de la machine en lui présentant des exemples de ce qu’elle doit effectuer. Ses utilisations sont nombreuses : reconnaissance vocale, intelligence artificielle, classifications, etc. Ainsi, la régression linéaire fait partie d’une des techniques d’apprentissage supervisé la plus utilisée dans la prédiction d’une valeur continue. Aussi, la grande majorité des problèmes de Machine Learning et de Deep Learning utilisent l’apprentissage supervisé : il est donc primordial de comprendre correctement le fonctionnement de cette méthode. 

Le but de l’apprentissage automatique est de créer des algorithmes aptes à recevoir des ensembles de données et à réaliser une analyse statistique pour prédire un résultat.

Si on appelle ça un apprentissage supervisé, c’est parce que le processus d’un algorithme tiré du Training Set (ensembles de données) peut être considéré comme un enseignant qui surveille le processus d’apprentissage. Nous connaissons les bonnes réponses, l’algorithme effectue des prédictions sur les réponses et est ensuite corrigé par l’enseignant. L’apprentissage cesse quand l’algorithme atteint le niveau attendu pour être efficient. 

L’apprentissage supervisé consiste en des variables d’entrée X et une variable de sortie Y. L’algorithme a pour but d’apprendre la fonction de l’entrée jusqu’à la sortie.

Y = f (X)

Les étapes de l’apprentissage supervisé sont : 

  1.     La collecte des données et leur labellisation
  2.     Le nettoyage des données pour identifier de potentielles erreurs ou manquement
  3.     Le prétraitement des données (identification des variables explicatives notamment)
  4.     Instanciation des modèles (modèle de régression ou de classification par exemple).
  5.     Entraînement des modèles 
  6.     Validation du modèle 

Ainsi et comme le montre la formule Y = f (X), le modèle d’apprentissage supervisé est très efficace pour étudier des relations linéaires mais il reste incapable de performer quand il y a des relations plus complexes qu’une linéarité entre les variables.

A contrario de l’apprentissage supervisé se trouve l’apprentissage non supervisé. Celui-ci correspond au fait de n’utiliser que des données d’entrée (X) et aucune variable de sortie Y correspondante. Le but de l’apprentissage non supervisé est de modéliser la structure des données afin d’en apprendre plus sur les données et à la différence de l’apprentissage supervisé, il n’y a pas de bonne réponse ni d’enseignant. Les algorithmes sont laissés à leurs propres processus pour étudier et choisir la structure des données qui soit intéressante. 

L’apprentissage supervisé présente des atouts que les apprentissages non supervisés n’ont pas, mais il rencontre aussi des difficultés. En effet, l’apprentissage supervisé est plus apte à prendre des décisions auxquelles les humains peuvent s’identifier car les données sont elles-mêmes fournies par l’humain. Néanmoins, les apprentissages supervisés rencontrent plus de difficultés à traiter les données qui s’ajoutent après l’apprentissage. En effet, si un système connaît les groupes chiens et chats et reçoit une photographie de souris, il devra la placer dans l’un ou l’autre de ces deux groupes alors qu’elle n’y appartient pas. Au contraire, si le système avait suivi un apprentissage non supervisé, il ne serait pas capable d’identifier que c’est une souris mais il serait capable de le définir comme n’appartenant à aucune des 2 catégories chiens et chats. 

L’apprentissage supervisé chez DataScientest

Considérant l’efficacité et l’importance de l’apprentissage supervisé, DataScientest le place parmi les connaissances à valider aux cours de ses formations. Notamment au sein de la formation de data analyst et dans le module de Machine Learning de 75h, il vous sera demandé d’apprendre à identifier les problèmes de Machine Learning non supervisés, et apprendre à utiliser des méthodes d’apprentissage supervisé par des problèmes de régression. De même, dans la formation de data management, dans le module Data Literacy, nous apprendrons à identifier quelle méthode de Machine Learning utiliser selon le type de métier. Enfin, dans la formation de data scientist, le module de Machine Learning de 75h se verra attribuer une partie conséquente sur le sujet des apprentissages supervisés et non supervisés, leurs mises en place et l’identification de leurs problèmes.