Search results for

data engineer

Microsoft Azure
Dossier

Pourquoi se former à Microsoft Azure ?

Azure est un service de Cloud Computing par abonnement mensuel créé par Microsoft en 2010. Les services Cloud de Microsoft incluent l’hébergement Web, les machines virtuelles, les services d’applications, le stockage de fichiers, la gestion des données, l’analyse et bien plus encore. Ils sont hébergés dans plus de 35 régions de centres de données à travers le monde. Azure propose des solutions de gestion et de traitement du Big Data basées sur le Cloud, notamment l’apprentissage automatique, l’analyse en continu et les services d’IA qui peuvent tous être gérés à partir du portail Azure central.

Obtenir l’un des Azure Certifications est un laissez-passer vers les postes parmi les plus rémunérés. Les organisations de tous horizons tendent progressivement à opter pour le Cloud Computing, une solution économe, sécuritaire, fiable et performante. En ce sens, se former à Microsoft Azure est une opportunité de carrière et une ouverture sur l’avenir du Cloud en entreprise.

Quelles sont les utilisations de Microsoft Azure ?

Azure est un service de Cloud Computing très populaire avec de nombreux produits et applications, ce qui entraîne une forte demande d’employés capables de concevoir, de déployer et de gérer des solutions Azure.

Cloud computing

Pour illustrer son importance, Indeed a répertorié plus de 500 postes Azure disponibles avec des estimations de salaire de 75 000 euros et plus. Les postes incluent Azure Developer, Azure Consultant, Azure Architect, Azure Cloud Administrator, Azure Engineer et plus encore, y compris de nombreux postes chez Microsoft.

Construire sa propre expertise Azure peut considérablement améliorer son CV et optimiser ses chances d’entrer dans le monde passionnant du Cloud Computing.

Quels sont les avantages du Cloud Computing Azure ?

L’apprentissage automatique est un avantage pour l’utilisation des Azure services Cloud dans une entreprise. Azure Machine Learning devient plus intelligent à mesure que les utilisateurs font appel à ses services. La reconnaissance de noms, l’extraction intelligente de fichiers avec un ensemble de mots-clés… font tous partie de l’apprentissage automatique. Les services Cloud avec la Machine Learning récupèrent rapidement les données afin que les entreprises puissent profiter de ce type de service à la demande.

Les machines virtuelles et les réseaux virtuels permettent d’exécuter des tâches de mémoire lourdes. Au lieu d’investir sur des ordinateurs plus importants et plus puissants pour exécuter des tâches, les entreprises font appel à des experts en Azure capables de créer une machine virtuelle qui utilise le Cloud pour exécuter leurs tâches. Ce type d’avantage peut leur permettre d’économiser chaque année de l’argent qui aurait été dépensé en matériel physique.

Un autre avantage des services Cloud est la possibilité d’utiliser des applications mobiles et Office 365 avec Azure. Avec le travail mobile d’aujourd’hui, il est facile d’accéder à des données critiques via des applications mobiles n’importe où et n’importe quand. Ainsi, grâce à l’intégration Azure et des solutions Cloud dans une entreprise, cette dernière s’appuiera moins sur un ordinateur spécifique pour charger des documents.

Qui doit suivre cette formation Azure Certification ?

Le mot « Cloud » a influencé la croissance de la carrière de nombreuses personnes et aujourd’hui experts Azure qui ont été auparavant des développeurs, des administrateurs système, des Ingénieurs de données, des Scientifiques de données et même des responsables informatiques.

Azure devient une compétence indispensable pour les professionnels de l’informatique, car des compétences en matière de Cloud Azure sont précieuses pour une entreprise cherchant à analyser, évaluer, gérer, adapter et optimiser l’offre et le coût de l’infrastructure informatique.

Étant donné que Microsoft Azure est open source, hybride et sécurisé, il propose une plate-forme Cloud en constante expansion qui dispose d’un réseau mondial massif pour les futures activités d’une organisation.

Une formation certifiante Mastering Microsoft Azure, permettant aux candidats de passer le Microsoft Certification Exam, est destinée aux professionnels de l’informatique qui veulent poursuivre une carrière dans le Cloud Computing et devenir Microsoft Azure Developer Specialist. Elle convient parfaitement aux :

          Professionnels de l’informatique

          Développeurs d’applications

          Data Engineers

          Data Scientists

          Solutions architect

          Ingénieurs DevOps

Quels sont les postes proposés par les entreprises aux professionnels Azure ?

Le développement d’applications basées sur le Cloud se développe à un rythme rapide. Les compétences et l’expérience d’Azure peuvent aider ceux qui suivent une formation Azure à s’orienter vers une carrière lucrative.

Open space bureau de travail

Certains des postes proposés par les entreprises pour les professionnels Azure sont :

          Développeur d’applications Cloud : se concentre principalement sur la mise en œuvre et la maintenance de l’infrastructure Cloud d’une organisation

          Cloud Architect: responsable de la gestion de l’architecture du Cloud Computing dans une organisation

          Ingénieur infrastructure Cloud Automation : se concentre sur l’automatisation, l’orchestration et l’intégration du Cloud

          Ingénieur Cloud système réseaux : responsable de la mise en œuvre, de la maintenance et de la prise en charge du matériel réseau, des logiciels et des liens de communication de l’infrastructure Cloud de l’organisation

Quelle est la future portée de la formation Azure ?

Microsoft Azure est une plate-forme de Cloud Computing publique qui propose de la rapidité en réduisant le temps de chargement grâce à Azure Content Delivery Network. Il s’agit d’un atout qui attire de plus en plus d’entreprises à faire appel à ses solutions telles que l’infrastructure en tant que service, le logiciel en tant que service et une plate-forme en tant que service. Ils peuvent être utilisés efficacement pour des services tels que l’analyse, la mise en réseau, le stockage, l’informatique virtuelle et bien d’autres services.

La portée future d’Azure semble assez prometteuse si elle est vue du point de vue de l’investissement. En mars 2021, Microsoft a investi 200 millions de dollars à proximité de la ville de Chicago. Ce sera un complexe de 11 data centers qui s’étendront sur 21 hectares. Ils seront opérationnels en 2022 pour répondre à la hausse de la demande.

Pourquoi suivre une formation Azure ?

Le Cloud Microsoft Azure connaît une croissance exponentielle. Selon le rapport Microsoft, 57 % des entreprises du Fortune 500 utilisent le Cloud Azure. En 2020, la hausse des revenus générés par Microsoft Azure a été projetée à 57,6 %. Et malgré la pandémie de Covid19, elle a tout de même été à 29 %.

Microsoft Azure est énorme. Il y a eu une croissance de 50 % de ses revenus pour l’année 2021. En tout, cette plateforme de Cloud Computing a généré près de 15,1 milliards de dollars de chiffre d’affaires.

Quels sont les cours généralement dispensés dans une formation Azure (Learning Path) ?

D’un établissement à un autre, une formation Azure est généralement la même. Ci-dessous une liste non exhaustive des cours :

          Fondamentaux de Microsoft Azure (Course)

          Analyse de données avec Microsoft Azure

          Technologies de sécurité Microsoft Azure

          Développement de solutions pour Microsoft Azure

          Conception et mise en œuvre de solutions Microsoft DevOps

          Ingénierie des données sur Microsoft Azure

          Administration de bases de données relationnelles sur Microsoft Azure

          Migration des charges de travail SQL vers Azure

          Migration des charges de travail NoSQL vers Azure Cosmos DB

          Implémentation des solutions Microsoft Azure Cosmos DB

          Migration des charges de travail d’application vers Azure

convolutional-neural-network
Définitions

Qu’est-ce qu’un convolutional neural network ?

Le convolutional neural network est une forme spéciale du réseau neuronal artificiel. Il comporte plusieurs couches de convolution et est très bien adapté à l’apprentissage automatique et aux applications avec Intelligence artificielle (IA) dans le domaine de la reconnaissance d’images et de la parole, de la vente et du marketing ciblé et bien plus encore.

Introduction au convolutional neural network

L’appellation convolutional neural network signifie « réseau neuronal convolutif » en Français. L’abréviation est CNN. Il s’agit d’une structure particulière d’un réseau de neurones artificiels spécialement conçu pour l’apprentissage automatique et le traitement d’images ou de données audio.

Dans une certaine mesure, son fonctionnement est calqué sur les processus biologiques derrières les réflexions du cerveau humain. La structure est similaire à celle du cortex visuel d’un cerveau. Le convolutional neural network se compose de plusieurs couches. La formation d’un réseau de neurones convolutifs se déroule généralement de manière supervisée. L’un des fondateurs du réseau de neurones convolutifs est Yann Le Cun.

Mise en place d’un convolutional neural network

Des neurones selon une structure entièrement ou partiellement maillés à plusieurs niveaux composent les réseaux de neurones conventionnels. Ces structures atteignent leurs limites lors du traitement d’images, car il faudrait disposer d’un nombre d’entrées correspondant au nombre de pixels. Le nombre de couches et les connexions entre elles seraient énormes et ne seraient gérables que par des ordinateurs très puissants. Différentes couches composent un réseau neuronal convolutif. Son principe de base est un réseau neuronal à propagation avant ou feedforward neural network partiellement maillé.

couches-cnn

Les couches individuelles de CNN sont :

  • Convolutional layers ou couches de convolution (CONV)
  • Pooling layers ou couches de Pooling (POOL)
  • ReLU layers ou couches d’activation ReLU (Rectified Linear Units)
  • Fully Connected layers ou couches Fully Connected (FC)

La couche de Pooling suit la couche de convolution et cette combinaison peut être présente plusieurs fois l’une derrière l’autre. La couche de Pooling et la couche de convolution étant des sous-réseaux maillés localement, le nombre de connexions dans ces couches reste limité et dans un cadre gérable, même avec de grandes quantités d’entrées. Une couche Fully Connected forme la fin de la structure.

Les tâches individuelles de chacune des couches

La couche de convolution est le plan de pliage réel. Elle est capable de reconnaître et d’extraire des caractéristiques individuelles dans les données d’entrée. Dans le traitement d’image, il peut s’agir de caractéristiques telles que des lignes, des bords ou certaines formes. Les données d’entrée sont traitées sous la forme d’une matrice. Pour ce faire, on utilise des matrices d’une taille définie (largeur x hauteur x canaux).

La couche de Pooling se condense et réduit la résolution des entités reconnues. À cette fin, elle utilise des méthodes telles que la mise en commun maximale ou la mise en commun de la valeur moyenne. La mise en commun élimine les informations inutiles et réduit la quantité de données. Cela ne réduit pas les performances du Machine Learning. Au contraire, la vitesse de calcul augmente en raison du volume de données réduit.

La couche d’activation ReLU permet un entraînement plus rapide et plus efficace en définissant les valeurs négatives sur zéro et en conservant les valeurs positives. Seules les fonctionnalités activées passent à la couche suivante.

La couche Fully Connected forme la fin d’un convolutional neural network CNN. Elle rejoint les séquences répétées des couches de convolution et de Pooling. Toutes les caractéristiques et tous les éléments des couches en amont sont liés à chaque caractéristique de sortie. Les neurones entièrement connectés peuvent être disposés dans plusieurs plans. Le nombre de neurones dépend des classes ou des objets que le réseau de neurones doit distinguer.

La méthode de travail à l’exemple de la reconnaissance d’image

Un CNN peut avoir des dizaines ou des centaines de couches qui apprennent à détecter différentes caractéristiques d’une image. Les filtres sont appliqués à chaque image d’apprentissage à différentes résolutions. La sortie de chaque image alambiquée est utilisée comme entrée pour la couche suivante. Les filtres peuvent aller de caractéristiques très simples telles que la luminosité et les contours à des caractéristiques plus complexes comme des spécificités qui définissent l’objet de manière unique.

Fonctionnalités d’apprentissage

Comme d’autres réseaux de neurones, une couche d’entrée, d’une couche de sortie et de nombreuses couches intermédiaires cachées composent un CNN. Ces couches effectuent des opérations qui modifient les données afin d’apprendre les caractéristiques spécifiques de ces données. Ces opérations se répètent en dizaines ou centaines de couches. Ainsi, chaque couche apprenne à identifier des caractéristiques différentes.

apprentissage-convolutional-neural-network

Poids partagé et valeurs de biais

Comme un réseau de neurones traditionnel, un CNN se compose de neurones avec des poids et des biais. Le modèle apprend ces valeurs au cours du processus de formation et les met continuellement à jour à chaque nouvel exemple de formation. Cependant, dans le cas des CNN, les valeurs des poids et des biais sont les mêmes pour tous les neurones cachés dans une couche spécifique.

Cela signifie que tous les neurones cachés détectent la même caractéristique telle qu’une bordure ou un point dans différentes régions de l’image. Cela permet au réseau de tolérer la traduction d’objets dans une image. Par exemple, un réseau formé à la reconnaissance des voitures pourra le faire partout où la voiture se trouve sur l’image.

Couches de classification

Après avoir appris les fonctionnalités multicouches, l’architecture d’un CNN passe à la classification. L’avant-dernière couche est entièrement connectée et produit un vecteur K-dimensionnel. Ici, K est le nombre de classes que le réseau pourra prédire. Ce vecteur contient les probabilités pour chaque classe de toute image classée. La couche finale de l’architecture CNN utilise une couche de classification pour fournir la sortie de classification.

Avantages d’un CNN dans le domaine de la reconnaissance d’images

Comparé aux réseaux neuronaux conventionnels, le CNN offre de nombreux avantages :

  • Il convient aux applications d’apprentissage automatique et d’Intelligence artificielle avec de grandes quantités de données d’entrée telles que la reconnaissance d’images.
  • Le réseau fonctionne de manière robuste et est insensible à la distorsion ou à d’autres changements optiques.
  • Il peut traiter des images enregistrées dans différentes conditions d’éclairage et dans différentes perspectives. Les caractéristiques typiques d’une image sont ainsi facilement identifiées.
  • Il nécessite beaucoup moins d’espace de stockage que les réseaux de neurones entièrement maillés. Le CNN est divisé en plusieurs couches locales partiellement maillées. Les couches de convolution réduisent considérablement les besoins de stockage.
  • Le temps de formation d’un CNN est également considérablement réduit. Grâce à l’utilisation de processeurs graphiques modernes, les CNN peuvent être formés de manière très efficace.
  • Il est la technologie de pointe pour le Deep Learning et la classification dans la reconnaissance d’images (image recognition).

Application d’un CNN dans le domaine du marketing

Le CNN est présent dans divers domaines depuis ces dernières années. La biologie l’utilise principalement pour en savoir plus sur le cerveau. En médecine, il fonctionne parfaitement pour la prédiction de tumeurs ou d’anomalies ainsi que pour l’élaboration de diagnostics complexes et de traitements à suivre en fonction des symptômes. Un autre domaine dans lequel il est couramment utilisé est celui de l’environnement. Il permet d’analyser les tendances et les modèles ou les prévisions météorologiques. Dans le domaine de la finance, il est couramment utilisé dans tout ce qui concerne la prévision de l’évolution des prix, l’évaluation ou l’identification du risque de contrefaçon.

Un CNN a de ce fait une application directe dans de nombreux domaines. Et pour faire face à l’accroissement de la quantité de données disponibles, il est également utilisé dans le marketing. En effet, dans le domaine des affaires et plus particulièrement en marketing, il a plusieurs usages :

  • Prédiction des ventes
  • Identification des modèles de comportement
  • Reconnaissance des caractères écrits
  • Prédiction du comportement des consommateurs
  • Personnalisation des stratégies marketing
  • Création et compréhension des segments d’acheteurs plus sophistiqués
  • Automatisation des activités marketing
  • Création de contenu

 crm-convolutional-neural-network

De toutes ses utilisations, la plus grande se trouve dans l’analyse prédictive. Le CNN aide les spécialistes du marketing à faire des prédictions sur le résultat d’une campagne, en reconnaissant les tendances des campagnes précédentes.

Actuellement, avec l’apparition du Big Data, cette technologie est vraiment utile pour le marketing. Les entreprises ont accès à beaucoup données. Grâce au travail de leur équipe experte dans la data science (data scientist, data analyst, data engineer), le développement de modèles prédictifs est beaucoup plus simple et précis. Les spécialistes du marketing pourront ainsi mieux ciblés les prospects alignés sur leurs objectifs.