Formations

Direct Query sur Power BI : Avantages, configuration et alternatives

Direct Query est une méthode permettant une connexion directe à une source de données avec Power BI. Découvrez tout ce que vous devez savoir : présentation, fonctionnement, avantages et inconvénients…

L’outil de business intelligence Power BI de Microsoft permet aux entreprises d’analyser et de visualiser des données de manière interactive. Il s’agit d’une plateforme complète, offrant de nombreuses fonctionnalités pour transformer les données brutes en informations exploitables pour la prise de décision stratégique.

Parmi ces différentes fonctionnalités, Direct Query permet de se connecter directement à une source de données externe. Par la suite, il est possible de travailler en temps réel avec les données sans avoir besoin de les copier comme c’est le cas avec la méthode classique d’importation.

À travers ce dossier, vous allez découvrir tout le fonctionnement de Direct Query et pourquoi cette méthode s’avère très utile dans certaines situations…

Qu’est-ce que Direct Query ?

À l’aide de Direct Query, les utilisateurs de Power BI peuvent se connecter directement à une source de données externes. Il peut s’agir d’une base de données, d’un fichier Excel, ou encore d’un service en ligne.

Dès que la connexion est établie, la requête est effectuée sur les données à la source et en temps réel. Les résultats sont ensuite affichés dans les visualisations de Power BI.

Afin de communiquer avec la source de données, Direct Query utilise un langage de requête comme SQL. Grâce à l’exécution en temps réel, les données sont toujours à jour et les résultats sont instantanés.

Apprendre à maîtriser Direct Query

Avantages et inconvénients

La possibilité d’accéder aux données en temps réel est l’un des principaux avantages offerts par Direct Query sur Power BI. Ceci permet une analyse des données plus précise, et plus efficace.

Par ailleurs, Direct Query évite le stockage redondant des données puisqu’il n’est pas nécessaire de les copier. Ainsi, les coûts de stockage peuvent être largement réduits.

Autre point fort : Direct Query peut exploiter des sources de données volumineuses sans avoir à les importer dans Power Query. Les utilisateurs n’ont donc guère à se soucier des limitations imposées par le stockage local.

Enfin, cette fonctionnalité permet d’optimiser les performances des rapports. Les données n’étant pas stockées localement, la taille du fichier est réduite et les temps de chargement s’en trouvent améliorés. Les problèmes de ralentissement sont également atténués.

Néanmoins, Direct Query comporte aussi des inconvénients et n’est donc pas toujours le choix idéal. Cette méthode de connexion directe impose une dépendance à une source de données en ligne, pouvant poser problème en cas de problème de connexion. Les temps de réponse peuvent augmenter.

Par ailleurs, les capacités de traitement de données sont limitées. La configuration de l’outil peut aussi s’avérer complexe…

Comment configurer Direct Query ?

La configuration de Direct Query s’effectue en plusieurs étapes. En premier lieu, il est nécessaire de se connecter à la source de données externes puis de créer un rapport dans Power BI.

On configure ensuite Direct Query afin d’utiliser les données en temps réel. Enfin, les visualisations et les filtres doivent être définis dans le rapport afin d’afficher les données.

Notons que la configuration de Direct Query peut varier en fonction de la source de données externe. C’est ce qui peut rendre la tâche potentiellement compliquée.

Par exemple, pour vous connecter à une base de données SQL Server, vous devrez sélectionner « Direct Query » comme méthode de connexion dans Power BI Desktop puis spécifier les informations de connexion à la base de données.

Précisons aussi que les fonctionnalités de transformation de données ne sont pas disponibles avec Direct Query. Par conséquent, toutes les transformations doivent être effectuées dans la source externe avant d’utiliser les données dans Power BI.

Enfin, certains types de données ne sont pas pris en charge par Direct Query. C’est notamment le cas des données semi-structurées.

Apprendre à utiliser Power BI

Direct Query vs Import : quelle est la meilleure méthode de connexion aux sources de données sur Power BI ?

Les deux principales méthodes de connexion à une source de données dans Power BI sont Direct Query et l’importation de données.

Cette dernière consiste à extraire les données de la source, afin de les stocker localement sur Power BI. C’est une alternative à la connexion directe offerte par Power BI.

En réalité, l’importation est la méthode la plus couramment utilisée. Après avoir extrait les données de la source, on les transforme en fonction des besoins avant de les stocker sur la plateforme.

Cette méthode est utile pour les sources de données volumineuses ou instables. Les données sont stockées localement, et les rapports peuvent donc être consultés indépendamment de la disponibilité de la source.

En revanche, ce stockage local peut consommer beaucoup d’espace sur le disque dur. Le volume d’importation est d’ailleurs limité à 1Go. De plus, les données peuvent rapidement devenir obsolètes si la source change fréquemment.

Conclusion : Direct Query, une alternative à l’importation de données sur Power BI

En conclusion, Direct Query est une fonctionnalité utile et puissante et Power BI permettant de travailler avec des données en temps réel et sans stockage redondant.

Toutefois, dans certains cas, il peut être préférable d’opter pour l’importation des données. Il est donc important de bien comprendre les avantages et inconvénients de chacune de ces méthodes.

Afin d’apprendre à maîtriser Power BI et ses nombreuses fonctionnalités comme Direct Query, vous pouvez choisir DataScientest.

Notre formation dédiée à Power BI se décline en trois formats : débutant, avancé ou maîtrise complète. La durée totale du programme est de 38 heures réparties sur 5 jours.

La partie destinée aux débutants permet d’apprendre à manier Direct Query et la connexion aux sources de données, le langage DAX et les bases de la dataviz.

Par la suite, au cours de la partie dédiée aux utilisateurs avancés, vous découvrirez le langage de formule M, ou encore des notions comme les DataFlows et l’actualisation incrémentielle.

À l’issue du cursus, vous serez capable de collecter, d’organiser, d’analyser les données avec Power BI et de créer des tableaux de bord interactifs. En tant que Microsoft Learning Partner officiel, DataScientest vous prépare aussi au passage de la certification Microsoft Power BI Data Analyst Associate.

Notre formation est également enregistrée au RNCP France Compétences, et notre organisme reconnu par l’État est éligible au Compte Personnel de Formation pour le financement. Découvrez DataScientest !

Découvrir la formation Power BI

Vous savez tout sur Direct Query dans Power BI. Pour plus d’informations sur le même sujet, découvrez notre dossier complet sur Power BI et notre dossier sur le langage DAX.

Shema de neural networks
Définitions

Neural networks : qu’est-ce qu’un réseau de neurones

Dans le domaine en constante évolution de l’intelligence artificielle, les réseaux de neurones, ou neural networks en anglais, émergent comme des piliers fondamentaux de la technologie. Ces constructions inspirées du cerveau humain ont révolutionné la manière dont les machines apprennent et interprètent des données.

Cet article plongera au cœur des neural networks, explorant leur fonctionnement, leurs applications et leur impact croissant sur des domaines aussi variés que la reconnaissance d’images, le traitement du langage naturel et la résolution de problèmes complexes.

Introduction aux Neural Networks

Les Neural Networks, également connus sous le nom de réseaux de neurones artificiels, constituent une pierre angulaire de l’intelligence artificielle et du domaine du machine learning. Les réseaux neuronaux représentent des modèles mathématiques sophistiqués conçus pour analyser des données et exécuter des missions complexes. À la base, un réseau de neurones est constitué de plusieurs couches interconnectées, chacune contenant des « neurones » artificiels qui traitent et transmettent les informations.

L’objectif fondamental des neural networks est d’apprendre à partir des données. Ils sont capables de détecter des motifs, des tendances et des relations au sein de la data, ce qui les rend particulièrement adaptés à des tâches telles que la reconnaissance d’images, la traduction automatique, la prédiction de séquences et bien plus encore. En ajustant les poids et les biais des connexions entre les neurones en fonction des données d’entraînement, les neural networks sont en mesure de généraliser leurs apprentissages et d’appliquer ces connaissances à de nouvelles données, ce qui en fait des outils puissants pour résoudre une variété de problèmes complexes.

Fonctionnement des Neurones Artificiels

Les éléments fondamentaux des réseaux de neurones, appelés neurones artificiels, s’inspirent du fonctionnement des neurones biologiques du cerveau humain. Chaque neurone artificiel reçoit des signaux d’entrée pondérés, qui sont sommés. Si cette somme dépasse un seuil, le neurone s’active, générant ainsi une sortie. Cette sortie devient l’entrée pour les neurones de la couche suivante. Les connexions entre les neurones sont liées à des poids, qui dictent l’importance de chaque connexion dans le calcul de la sortie. Les neurones artificiels apprennent en ajustant ces poids avec les données d’entraînement.

Les réseaux de neurones se déploient en couches : entrée, cachées et sortie. Les données d’entrée passent par la couche d’entrée, puis traversent les couches cachées où les calculs se déroulent. La couche de sortie fournit le résultat final. Des fonctions d’activation insérées dans les neurones introduisent des seuils non linéaires, capturant ainsi des relations complexes entre les données. Par des algorithmes d’apprentissage, les poids des connexions s’ajustent pour réduire la différence entre prédictions et sorties réelles, optimisant ainsi la généralisation du réseau pour obtenir des résultats précis sur de nouvelles données.

Les Différents Types de Neural Networks

Les réseaux de neurones, base fondamentale de l’apprentissage profond, se diversifient en types variés, adaptés à des tâches spécifiques. Parmi eux se trouvent les réseaux de neurones feedforward, aussi appelés perceptrons multicouches (MLP), qui comportent des couches successives de neurones. Ils sont utilisés pour la classification, la régression et la reconnaissance de motifs.

Les réseaux de neurones convolutifs (CNN), quant à eux, se focalisent sur les données structurées comme les images. Ils emploient des couches de convolution pour extraire des caractéristiques, suivies de sous-échantillonnage pour réduire les données. Les CNN excellent dans la reconnaissance d’images, la détection d’objets et la segmentation. D’autre part, les réseaux de neurones récurrents (RNN) se concentrent sur les séquences, comme le langage naturel. Leur architecture gère les dépendances temporelles et les entrées variables, utiles pour la traduction, la génération de texte et l’analyse de sentiment. Chaque type de réseau de neurones présente des avantages selon les données et les objectifs d’apprentissage.

Deep Learning et Couches Profondes dans les Neural Networks

Le Deep Learning, une sous-branche de l’apprentissage automatique, s’est révélé être une avancée majeure dans la réalisation de tâches complexes en utilisant des réseaux de neurones profonds. L’idée fondamentale derrière le Deep Learning est de construire des réseaux de neurones comportant plusieurs couches de traitement, également appelées couches profondes. Ces couches multiples permettent aux réseaux de capturer des représentations hiérarchiques et abstraites des données, améliorant ainsi leur capacité à résoudre des problèmes de plus en plus complexes.

Les couches profondes d’un réseau de neurones sont composées de neurones connectés en série, chacun effectuant une transformation mathématique des données qu’il reçoit en entrée. Les premières couches du réseau sont généralement responsables de l’extraction de caractéristiques simples, telles que les bords ou les formes basiques, tandis que les couches ultérieures combinent ces caractéristiques pour former des représentations plus complexes et sémantiques. L’ensemble du processus d’apprentissage vise à ajuster les poids et les biais des neurones afin de minimiser l’erreur entre les sorties prédites du réseau et les véritables étiquettes.

L’avantage clé des réseaux de neurones profonds réside dans leur capacité à apprendre des modèles de données à différents niveaux d’abstraction, ce qui les rend adaptés à une variété de tâches, de la reconnaissance d’images à la traduction automatique. Cependant, la profondeur accrue des réseaux ajoute également à la complexité de l’entraînement et à la nécessité de techniques avancées pour éviter le surapprentissage. Malgré ces défis, le Deep Learning a propulsé les performances de l’apprentissage automatique à de nouveaux sommets, ouvrant la voie à des applications innovantes et à des avancées significatives dans divers domaines.

Generative Adversarial Networks (GAN)

Les Réseaux Générateurs Adversaires (GAN) représentent une avancée révolutionnaire dans le domaine de l’intelligence artificielle, en particulier dans la génération de contenu réaliste comme des images, des vidéos et même du texte. Les GAN ont été introduits en 2014 par Ian Goodfellow et ses collègues, et depuis lors, ils ont suscité un grand engouement pour leur capacité à créer des données nouvelles et authentiques à partir de zéro.

L’architecture des GAN est basée sur deux réseaux neuronaux profonds antagonistes : le générateur et le discriminateur. Le générateur crée des données synthétiques, tandis que le discriminateur essaie de faire la distinction entre les données réelles et générées. Au fil de l’entraînement, le générateur s’améliore en essayant de tromper le discriminateur, et celui-ci s’améliore en distinguant de mieux en mieux entre les deux types de données.

Le processus de compétition entre le générateur et le discriminateur permet aux GAN de produire des données de haute qualité qui sont difficilement distinguables des données réelles. Cette technologie a eu un impact majeur sur la création d’art numérique, la synthèse de vidéos, la génération de scénarios pour les simulations et même la création de visages humains synthétiques réalistes. Cependant, les GAN ne sont pas sans leurs défis, notamment en ce qui concerne la stabilité de l’entraînement et le contrôle de la qualité des données générées. Malgré cela, les GAN continuent de susciter un intérêt croissant et ouvrent de nouvelles perspectives passionnantes pour la création et la manipulation de contenu numérique.

Tendances Futures dans le Domaine des Neural Networks

Le domaine des réseaux neuronaux connaît actuellement une croissance exponentielle, avec des avancées et des tendances futures qui ouvrent de nouvelles perspectives passionnantes. L’une de ces tendances est l’expansion continue du Deep Learning vers des domaines tels que la vision par ordinateur, le traitement du langage naturel et même la science des données. Les architectures de réseaux neuronaux de pointe, telles que les réseaux neuronaux convolutifs (CNN) et les réseaux récurrents, sont constamment affinées pour obtenir des performances encore meilleures dans des tâches complexes comme la traduction automatique, la compréhension du langage naturel et la reconnaissance d’objets.

Une autre tendance prometteuse est l’intégration de l’intelligence artificielle dans les objets quotidiens via l’Internet des Objets (IoT). Les réseaux neuronaux embarqués sur des dispositifs connectés permettront des interactions plus intelligentes et personnalisées avec nos environnements. De plus, la montée en puissance du traitement automatisé des langues naturelles et la génération de contenu multimédia par les réseaux neuronaux soulèvent des questions passionnantes sur la créativité, l’éthique et les limites de l’IA.

Alors que l’industrie continue de s’appuyer sur les réseaux neuronaux pour résoudre des problèmes de plus en plus complexes, la collaboration interdisciplinaire, les innovations algorithmiques et les percées matérielles joueront un rôle crucial dans la définition des prochaines tendances. Les réseaux neuronaux ne cessent d’évoluer et de remodeler le paysage technologique, ouvrant la voie à un avenir où l’intelligence artificielle sera de plus en plus intégrée dans notre quotidien.

Table de travail d'un business analyst
Définitions

Analyse Commerciale : Découvrez le monde de la Business Analytics

Dans le paysage commercial actuel, l’analyse est devenue un pilier essentiel pour orienter les choix stratégiques et favoriser la croissance. L’émergence du Big Data et des innovations technologiques a donné lieu à une discipline indispensable : la Business Analytics. Ce champ d’expertise explore et valorise les données pour révéler des insights pertinents, des tendances occultes et des orientations stratégiques. Il permet ainsi aux entreprises de prendre des décisions avisées tout en acquérant un avantage compétitif.

Qu’est-ce que la Business Analytics ?

La Business Analytics, aussi connue sous le nom d’analyse commerciale, est une discipline essentielle en affaires. Elle concerne la collecte, le traitement et l’analyse de données dans le but de fournir des insights actionnables. Ce champ permet aux entreprises de s’appuyer sur des données concrètes pour orienter leur stratégie, plutôt que sur de simples hypothèses. Au lieu de se limiter à l’examen des tendances historiques, la Business Analytics exploite des méthodes avancées pour révéler des motifs, relations et opportunités souvent méconnus. Par l’emploi de techniques variées, comme les analyses statistiques et les modèles prédictifs, elle aide les organisations à mieux comprendre leur position actuelle, à prévoir les évolutions futures et à optimiser leurs opérations.

Elle couvre une gamme variée de secteurs, de la finance au marketing en passant par la gestion des ressources humaines et la logistique. Elle intègre non seulement les données internes, mais aussi des informations externes pour offrir une vue globale. Avec les progrès technologiques et la montée en puissance de l’intelligence artificielle, la Business Analytics a évolué de manière significative. Elle propose désormais des solutions sophistiquées en matière de visualisation de données, de prédiction de tendances et d’optimisation des processus. En résumé, elle est devenue un levier essentiel pour toute organisation cherchant à prendre des décisions fondées dans un environnement d’affaires en constante mutation.

Différence entre Business Analytics et Business Intelligence

Bien que les termes « Business Analytics » et « Business Intelligence » puissent parfois être considérés comme synonymes, ils se distinguent par leurs approches et leurs objectifs en matière de données d’affaires. La Business Intelligence (BI) met l’accent sur l’agrégation, l’organisation et la visualisation des données historiques de l’entreprise. Elle offre une perspective rétrospective, alimentant ainsi la prise de décisions basées sur des informations passées.

À l’inverse, la Business Analytics (BA) va plus loin en s’intéressant à l’anticipation des performances à venir. Elle utilise des méthodes sophistiquées comme l’analyse prédictive, la modélisation statistique et même l’apprentissage machine pour éclairer sur des tendances, des relations et des corrélations inexplorées. Son but ultime est d’orienter des décisions stratégiques et opérationnelles plus éclairées. En somme, tandis que la BI se consacre à une compréhension rétrospective des données, la BA se focalise sur des analyses avancées pour guider l’avenir.

L’Impact du Business Analytics sur la Prise de Décision

L’adoption de la Business Analytics dans le processus décisionnel a révolutionné la stratégie d’entreprise. Avec une analyse de données poussée, les dirigeants disposent d’éléments concrets pour orienter leurs choix. Ces outils d’exploration révèlent des tendances et des relations complexes, souvent sources d’aperçus inattendus. Ainsi, les entreprises peuvent non seulement anticiper des opportunités mais aussi des risques, tout en s’appuyant sur des données fiables pour leurs décisions.

L’influence de la Business Analytics s’étend également à l’efficacité opérationnelle. En ajustant les processus internes à partir des analyses de données, les organisations ont la possibilité de minimiser les coûts, maximiser la productivité et améliorer le service client. Par exemple, l’exploration de données peut mettre en lumière des zones d’inefficacité dans la chaîne d’approvisionnement, optimiser la gestion des stocks ou encore personnaliser l’expérience client. À l’ère du numérique, la Business Analytics constitue un levier stratégique pour les entreprises cherchant à se démarquer et à s’adapter dans un environnement dynamique.

Exemples Concrets d’Application

Dans divers secteurs d’activité, la Business Analytics trouve des applications concrètes. En commerce de détail, elle permet, via l’analyse prédictive, d’anticiper les goûts des consommateurs pour une gestion optimale des stocks et une réponse efficace à la demande. Elle intervient également dans la tarification dynamique pour s’ajuster en temps réel selon la demande et les concurrents.

En santé, la Business Analytics facilite la prise de décisions médicales en prédisant les admissions futures et en allouant judicieusement les ressources. Elle aide aussi à cerner les facteurs de risque pour les patients et accélère la découverte de nouveaux médicaments.

Dans le secteur des médias et du divertissement, elle joue également un rôle significatif. Les services de streaming utilisent ces analyses pour personnaliser les recommandations, augmentant ainsi l’engagement utilisateur. Les studios de cinéma, de leur côté, ont recours à l’analyse prédictive pour estimer les performances potentielles de nouveaux films et ajuster leurs campagnes publicitaires en conséquence.

Cette polyvalence démontre que la Business Analytics s’impose comme un élément clé dans plusieurs industries, apportant des bénéfices concrets en matière de prise de décision, d’optimisation des opérations et d’innovation.

Les Compétences Requises pour une Carrière en Business Analytics

Pour débuter une carrière en analyse commerciale, un panel de compétences diversifié est requis, notamment en statistiques, en programmation et en communication. Comprendre les méthodes statistiques pour examiner des données et anticiper des tendances est fondamental.

L’aptitude à manipuler des outils d’analyse s’avère également indispensable. Cela englobe la maîtrise de langages comme Python ou R et la compétence pour travailler sur des plateformes SQL destinées à la gestion de bases de données. Savoir visualiser les données via des outils comme Tableau ou Power BI est un autre atout, permettant de rendre les résultats accessibles et intuitifs.

Au-delà des compétences purement techniques, l’analyse commerciale exige également un bon sens de la communication et du travail en équipe. Savoir décomposer des résultats analytiques complexes en messages simples pour les parties prenantes non initiées est crucial. Des aptitudes en pensée critique et en résolution de problèmes complètent le profil, aidant à cerner les enjeux d’analyse, à concevoir des stratégies adaptées et à contextualiser les résultats.

Ainsi, une carrière réussie en analyse commerciale allie des compétences techniques, des capacités d’analyse et des qualités relationnelles pour fournir une réelle plus-value aux entreprises.

Tendances Actuelles dans le Business Analytics

Le secteur de la Business Analytics est en pleine mutation, avec l’émergence de plusieurs tendances cruciales. Parmi celles-ci, l’intégration de l’intelligence artificielle (IA) et de l’apprentissage automatique dans les pratiques d’analyse prend de l’ampleur. L’objectif est d’exploiter ces technologies pour détecter des schémas plus élaborés et pour automatiser un nombre croissant de fonctions analytiques, ouvrant ainsi la voie à des solutions plus avancées et prédictives.

Une autre évolution notable est le recours croissant à l’analyse en temps réel. Les entreprises s’orientent de plus en plus vers des dispositifs permettant une prise de décision immédiate en se basant sur des données en cours de production. Ceci requiert des infrastructures de données et d’analyse agiles et performantes, ainsi que l’adoption de technologies comme le traitement en mémoire et les plateformes d’analyse en temps réel.

La question de la confidentialité et de la sécurité des données reste également un enjeu de taille. Une attention accrue est portée aux techniques d’anonymisation et de sécurisation des données pour répondre à ces préoccupations.

En résumé, la Business Analytics poursuit sa transformation pour s’adapter aux besoins fluctuants des entreprises dans un environnement toujours plus centré sur les données. Les évolutions en matière d’IA, d’analyse en temps réel et de sécurité des données soulignent l’importance grandissante de ce domaine dans la prise de décision et l’impulsion de l’innovation.

Formations

La formation de Digital Analyst – Guide complet

Que ce soit pour gagner en visibilité ou pour convertir des prospects en clients, la majorité des entreprises doit développer sa présence sur le web. Mais pour atteindre les objectifs fixés (en termes de notoriété ou de conversion), encore faut-il mettre en place les bonnes actions. Et pour savoir ce qui est le plus pertinent, il convient d’utiliser et d’exploiter toutes les données à disposition. C’est justement le rôle du digital analyst. Alors quel est ce nouveau métier ? Quelles sont ses missions ? Quelles sont les compétences indispensables ? Et surtout, quelle formation pour devenir digital analyst ? Nous répondons à toutes vos questions.

Qu’est-ce qu’un digital analyst ?

Également appelé web analyst ou chef de projet tracking, le digital analyst exploite toutes les données issues du web et des réseaux sociaux pour améliorer les performances de l’entreprise en ligne. Concrètement, l’analyse des données doit permettre d’optimiser l’expérience utilisateur sur un site web, comprendre les sources de trafic et plus globalement le retour sur investissement de toutes les actions entreprises via le site (SEA, SEO, landing pages…). Ce faisant, les organisations améliorent leur avantage concurrentiel.

À ce titre, le métier de chef de projet tracking est particulièrement prisé par les entreprises de tout secteur d’activité. Mais pour exercer cette profession, mieux vaut suivre une formation de digital analyst.

Quelles sont les missions d’un digital analyst ?

Pour améliorer les performances d’une entreprise sur le web grâce aux données, le digital analyst doit mettre en place les actions suivantes : 

  • Implémenter des outils de collecte de données : le web analyst doit récupérer un maximum d’informations sur le comportement des utilisateurs d’un site internet. À la fois pour mieux connaître sa cible (âge, secteur géographique, sexe…), mais aussi pour mieux comprendre ses habitudes (panier moyen, temps de visite, période de navigation, abandon de panier…). En effet, les actions de l’internaute sont des ressources précieuses pour l’entreprise. Et ce, tout au long du parcours client.
  • Analyser les données : les informations ainsi collectées permettent au digital analyst de déduire des tendances et d’identifier le client cible.
  • Représenter les données : si le chef de projet tracking peut comprendre facilement les milliers de lignes issus d’un fichier Excel, ce n’est pas forcément le cas des décisionnaires. Pour faciliter la compréhension par tous, cet expert data doit représenter les données à travers des outils de visualisation (notamment des graphiques, des tableaux de bord, des courbes…).
  • Faire des recommandations : en fonction de son analyse, il peut suggérer des actions pour améliorer l’expérience utilisateur, la stratégie digitale et la conversion globale du site web.
  • Animer des formations : cette mission n’est pas automatique. Mais force est de constater que l’analyse d’un site web et du comportement des utilisateurs concerne plusieurs départements de l’organisation. Par seulement les experts data. Ainsi, le digital analyst peut former les équipes marketing, commerciales, produit, …. L’idée est alors de les sensibiliser à l’importance des données pour prendre de meilleures décisions.

Pour remplir ces missions avec efficacité, nous vous conseillons de suivre une formation de digital analyst.

Maîtriser le rôle de digital analyst

Pourquoi suivre une formation digital analyst ?

Entre le monde des données et du marketing, le digital analyst doit posséder de multiples compétences techniques. À savoir : 

  • Le marketing digital ; 
  • Les langages informatiques (HTML, CSS…) ; 
  • Les outils d’analyse web (Google Analytics, Omniture, Webtrends…) ; 
  • La programmation web ; 
  • Les outils CRM.

Pour acquérir ces différentes hard skills, il est préférable de suivre une formation digital analyst. 

Au-delà de ces compétences techniques, le web analyst doit aussi disposer de plusieurs qualités personnelles. Par exemple, la curiosité pour continuer à se former sur les dernières tendances en marketing digital et les nouvelles technologies, ou encore un sens du relationnel pour former les équipes et apporter des recommandations.

Bon à savoir : la maîtrise de l’anglais est un plus pour devenir digital analyst.

Quelle formation pour être digital analyst ?

Que ce soit pour acquérir une connaissance des langages informatiques, des spécificités du marketing digital ou pour mettre en place des outils de collecte de données, il est primordial de se former. Mais à l’heure actuelle, il n’existe pas encore de formation spécifique pour devenir digital analyst. Cela dit, il est possible d’exercer ce métier après un bac+3 ou bac + 5 en marketing digital, mathématique statistique, communication et multimédias (en école de commerce ou à l’université). 

Et bien sûr, vous pouvez également suivre une formation de data analyst.

Rejoignez DataScientest pour devenir digital analyst

Si le digital analyst doit maîtriser le marketing, c’est avant tout un expert des données. Il doit déduire des insights afin d’aider les équipes à prendre de meilleures décisions. Mais pour maîtriser l’analyse de données, mieux vaut suivre une formation spécifique. C’est justement ce que nous vous proposons chez DataScientest. Grâce à nos formations data analyst (ou même data scientist, vous apprendrez à maîtriser les outils et la méthode de travail pour devenir digital analyst.

Devenir digital analyst

Actualités

Logo Power BI : découvrez son histoire et sa signification

Le logo de Power BI a évolué au fil du temps pour illustrer les transformations et la croissance de cette plateforme devenue référence dans le domaine de l’analyse de données. Découvrez son histoire, et sa véritable symbolique…

Bien plus qu’une simple image, un logo est souvent perçu comme le visage d’une marque. Il s’agit d’un symbole visuel qui évoque des émotions, des souvenirs chez les spectateurs et raconte l’histoire d’une entreprise ou d’un produit.

C’est exactement le cas du logo de la plateforme de business intelligence Power BI de Microsoft. Au fil des années, il a connu de multiples évolutions pour refléter les changements et l’ajout de nouvelles fonctionnalités. C’est la raison pour laquelle il est très intéressant de l’analyser…

Le logo originel de 2013 à 2016

Lors du lancement initial de Power BI, le logo était composé de cinq éléments jaunes placés contre un fond blanc. Il représentait, de manière abstraite, un tableau analytique avec quatre colonnes de taille croissante dans un cadre symbolisant un écran de PC.

À la fois dynamique et claire, cette image traduisait parfaitement le but et la philosophie de Power BI. L’absence de texte mettait l’accent sur le sérieux de la plateforme et son indépendance des programmes existants, tandis que les angles arrondis donnaient aux utilisateurs un sentiment de sécurité.

Une première refonte de 2016 à 2020

En 2016, Microsoft a modifié le logo de Power BI pour la première fois. Le cadre représentant un écran est devenu droit, alors qu’il était tourné sur le côté auparavant. L’épaisseur des bordures a aussi été réduite, sans doute pour retranscrire la disparition des bordures sur les écrans de PC et de smartphone survenue à cette époque.

Les extrémités des quatre colonnes ont été arrondies, afin de conférer un design global plus adouci au logo. Les colonnes ont également été disposées en désordre, pour montrer que Power BI est utile pour l’analyse de données complexes et déstructurées…

La couleur a aussi été légèrement éclaircie, passant du jaune sombre à l’or pâle. Là encore, le but est de rassurer l’utilisateur et de lui inspirer des sentiments positifs.

Le grand changement de 2020 à aujourd’hui

En 2020, Microsoft a totalement changé le style de ses logos pour moderniser son image de marque. Ainsi, le badge de Power BI a été modifié pour devenir plus minimaliste.

Calme et volumineux, ce nouveau logo ne contient plus de cadre représentant un écran. Seul le graphique en barres de la première version est conservé, et ne contient plus que trois colonnes croissantes. Leurs couleurs vont du jaune pâle au sable sombre.

Cette transformation ajoute davantage de clarté, car l’attention des utilisateurs est immédiatement rivée sur le diagramme. Ce nouveau logo est plus facilement identifiable, et inspire directement la simplicité.

Que symbolise le logo Power BI ?

Chaque élément de ce logo est soigneusement choisi pour véhiculer un message et évoquer des sentiments spécifiques chez les utilisateurs.

La couleur jaune est associée à l’énergie et au dynamisme, reflétant l’expertise et la confiance. La forme géométrique évoque quant à elle la structure et la complexité des données, tout en illustrant la capacité de Power BI à les organiser et à leur donner du sens.

Avec l’apparence du logo Power BI, sa symbolique a également évolué. Les premières versions arboraient des couleurs sobres et une typographie élégante pour refléter le professionnalisme et la fiabilité associés à Microsoft.

À mesure que la plateforme s’étoffait de fonctionnalités et gagnait en popularité, ses concepteurs ont cherché à exprimer l’idée de puissance, d’accessibilité et de modernité à travers le logo.

Lorsque la BI en libre-service est devenue une tendance majeure, le logo a évolué pour refléter cette orientation. Il est devenu plus convivial, afin d’encourager les utilisateurs à explorer et à analyser leurs données d’une manière autonome.

Les différentes itérations ont aussi été influencées par les tendances de design graphique de leur époque. L’objectif était de rendre le logo à la fois intemporel et dans l’air du temps.

Comment apprendre à maîtriser Power BI ?

Vous connaissez désormais tous les secrets du logo de Power BI. Pour aller plus loin, vous pouvez apprendre à maîtriser cette plateforme de business intelligence avec DataScientest !

Notre formation se décompose en deux parties. La première s’adresse aux débutants et permet de découvrir l’analyse de données et la conception de dashboard à l’aide d’outils comme DAX et Power Query.

La seconde partie, destinée aux utilisateurs plus avancés, aborde les subtilités de chaque service et les notions complexes comme les DataFlows et l’actualisation incrémentielle.

En fonction de votre niveau et de vos objectifs, il est possible d’effectuer l’une de ces deux parties ou la totalité du cursus pour acquérir la maîtrise complète de Power BI !

L’ensemble de la formation se complète à distance en seulement 38 heures réparties sur cinq jours. En fin de parcours, vous pourrez passer l’examen officiel Microsoft PL-300 pour obtenir la certification Power BI Data Analyst Associate.

Ce cursus peut être effectué à temps plein ou en temps partiel sur 30 jours, et notre organisme est éligible au CPF pour le financement. Découvrez vite DataScientest pour devenir expert Power BI !

Découvrir la formation Power BI

Vous savez tout sur le logo Power BI. Pour plus d’informations sur le même sujet, découvrez notre dossier complet sur Power BI et notre dossier sur le langage DAX

Formations

Formation Intelligence artificielle : pourquoi et comment devenir expert en IA ?

Quelle est l’évolution de l’IA au fil du temps ?

Depuis les premiers travaux de recherche dans les années 1950, l’Intelligence artificielle a pour but de créer des systèmes informatiques et des machines capables de réaliser des tâches exigeant normalement une intelligence humaine.

Elle vise à développer des algorithmes et des modèles permettant aux machines d’apprendre, de raisonner, de reconnaître des motifs, de prendre des décisions et de résoudre des problèmes de manière autonome.

Après une longue période de stagnation surnommée « hiver de l’IA », l’intérêt pour cette technologie a connu une résurgence majeure au cours des dernières années grâce aux avancées dans le domaine de l’apprentissage automatique. En particulier, l’utilisation des réseaux neurones profonds et du deep learning ont permis l’émergence de nouveaux cas d’usage.

Le machine learning permet aux ordinateurs d’apprendre à partir de données et de s’améliorer avec l’expérience. C’est ce qui permet à Amazon de recommander des produits, à Gmail de suggérer des réponses aux messages, ou à Spotify de vous conseiller de nouvelles musiques.

De même, le traitement du langage naturel (NLP) est une technique d’IA permettant aux machines de comprendre et d’interagir avec le langage humain. Les chatbots de service client et les assistants vocaux comme Apple Siri reposent sur cette technologie.

Avec l’apparition récente des Larges Modèles de Langage comme OpenAI GPT ou Google PaLM, de nouveaux outils ont vu le jour en 2022 : les IA génératives, telles que ChatGPT ou Bard.

Désormais, l’Intelligence artificielle est capable de générer n’importe quel type de contenu écrit, visuel ou même audio à partir d’un simple prompt entré par l’utilisateur.

C’est une révolution, mais il ne s’agit que d’un début. Dans un futur proche, l’IA servira de cerveau à des robots de forme humanoïde capables d’effectuer toutes sortes de tâches manuelles comme le Tesla Optimus.

À plus long terme, les recherches pourraient mener à la naissance d’une « Intelligence artificielle générale » qui serait équivalente ou même supérieure à l’intelligence humaine

Il ne fait aucun doute que l’IA va changer le monde et permettre d’automatiser de nombreuses tâches intellectuelles ou manuelles. En contrepartie, beaucoup de métiers risquent de disparaître et plusieurs experts redoutent une vague de chômage sans précédent.

Toutefois, cette technologie va aussi créer des millions de nouveaux emplois. À mesure qu’elle évoluera, de nouveaux cas d’usage apparaîtront et la demande en experts capables de créer, de gérer ou d’appliquer l’Intelligence artificielle va s’accroître.

Afin de profiter de ces nouvelles opportunités professionnelles, suivre une formation en IA est un choix très pertinent pour votre carrière. Voici pour quelles raisons.

 

Pourquoi suivre une formation d’Intelligence artificielle ?

Selon le Forum Économique Mondial, le nombre d’emplois remplacés par l’IA sera largement surpassé par le nombre d’emplois créés. D’ici 2025, plus de 97 millions de nouveaux postes pourraient voir le jour.

Mieux encore : il s’agirait de rôles « plus adaptés à la nouvelle division du travail entre les humains, les machines et les algorithmes ».

Par conséquent, apprendre à maîtriser l’Intelligence artificielle dès à présent peut être un précieux sésame pour les futurs métiers de l’IA ou pour incorporer la technologie à votre profession actuelle.

La technologie va continuer de s’améliorer au cours des prochaines années, et s’étendre à des secteurs et champs d’application toujours plus diversifiés.

Elle est déjà utilisée dans de nombreuses industries telles que la finance, la médecine, la sécurité ou l’automobile et sera bientôt utilisée dans tous les domaines.

Face à la forte demande, les professionnels de l’IA peuvent bénéficier d’une rémunération élevée. Selon Talent.com, leur salaire médian en France atteint 45 000€ par an et dépasse 70 000€ pour les plus expérimentés. 

Suivre une formation IA

Les métiers de l’IA et leurs salaires

L’ingénieur en Intelligence artificielle ou ingénieur IA est un professionnel utilisant les techniques d’IA et de Machine Learning pour développer des systèmes et applications visant à aider les entreprises à gagner en efficacité.

Cet expert se focalise sur le développement d’outils, de systèmes et de processus permettant d’appliquer l’IA à des problèmes du monde réel. Les algorithmes sont entraînés par les données, ce qui les aide à apprendre et à améliorer leurs performances.

Ainsi, un ingénieur IA permet à une organisation de réduire ses coûts, d’accroître sa productivité et ses bénéfices, et à prendre les meilleures décisions stratégiques. Selon Glassdoor, son salaire moyen atteint 40 000 euros en France et 120 000 dollars aux États-Unis.

De son côté, l’ingénieur en Machine Learning ou ML Engineer recherche, conçoit et construit l’IA utilisée pour le machine learning. Il maintient et améliore les systèmes existants, et collabore avec les Data Scientists développant les modèles pour construire les systèmes IA.

Au quotidien, ce professionnel mène des expériences et des tests, effectue des analyses statistiques et développe des systèmes de machine learning. Son salaire dépasse 50 000 euros en France selon Glassdoor, et 125 000 dollars aux États-Unis.

Un autre métier lié à l’IA est celui de Data Engineer. Il se charge de collecter, gérer et convertir les données brutes en informations exploitables pour les data scientists et autres analystes métier. Le salaire moyen est de 115 592 dollars aux États-Unis et 45 000 euros en France d’après Glassdoor.

De même, le Data Scientist utilise les données pour répondre aux questions et résoudre les problèmes d’une entreprise. Il développe des modèles prédictifs utilisés pour prédire les résultats, et peut utiliser les techniques de machine learning. Son salaire médian est de 48 000 euros en France et 126 000 dollars aux États-Unis.

L’ingénieur logiciel ou Software Engineer a lui aussi un rôle à jouer dans l’Intelligence artificielle. Il utilise le code informatique pour créer ou améliorer tout type de programme. Son salaire moyen atteint 55 000 euros en France et 107 000 dollars aux États-Unis.

Selon un rapport de McKinsey, en 2022, 39% des entreprises ont recruté des ingénieurs logiciels et 35% ont employé des Data Engineers pour des postes liés à l’IA.

Enfin, l’Intelligence artificielle sera très bientôt incorporée aux robots et les ingénieurs en robotique feront donc aussi partie des métiers de l’IA.

Ils se chargent de concevoir de nouveaux produits ou d’assembler des prototypes pour les tester, et observent leurs performances. Ce métier combinant l’ingénierie mécanique et électrique avec l’informatique permet de percevoir un salaire dépassant 42 000 euros par an et 100 000 dollars aux États-Unis.

Il ne s’agit là que de quelques exemples de métiers de l’IA. À l’avenir, de nombreuses autres professions vont apparaître comme celle du Prompt Engineer chargé de concevoir les prompts pour obtenir les meilleurs résultats avec un outil comme ChatGPT.

Quel que soit le rôle que vous souhaitez exercer dans le domaine de l’IA, il est essentiel de suivre une formation pour acquérir l’expertise requise.

Comment suivre une formation d’Intelligence artificielle ?

Pour lancer votre carrière dans l’Intelligence artificielle, vous pouvez obtenir une certification professionnelle afin de démontrer votre expertise aux employeurs.

Parmi les certifications IA les plus reconnues à l’heure actuelle, on compte la certification « MIT: Artificial Intelligence: Implications for Business Strategy », les certificats d’ingénieur, consultant et scientifique IA de l’USAII, ou encore le titre d’Artificial Intelligence Engineer ARTIBA.

Afin d’obtenir un diplôme et d’assimiler toutes les compétences indispensables pour travailler dans l’IA. Vous pouvez choisir DataScientest. Nos formations Machine Learning Engineer, Data Engineer ou Data Scientist vous permettront d’obtenir l’expertise requise pour exercer le métier de vos rêves.

Vous découvrirez notamment les fondamentaux de l’Intelligence artificielle, le machine learning, le traitement naturel du langage (NLP), la vision par ordinateur (Computer Vision), ou encore les enjeux éthiques liés à l’IA.

Commencer une formation sur l’IA

Formations

Connaissez-vous le métier de Data Hoarder ?

La digitalisation nous amène ces dernières années à sauvegarder de plus en plus de données hétérogènes. La démocratisation de l’utilisation du Cloud nous engage instinctivement à ne plus trier et à conserver tout type d’informations, y compris certaines obsolètes ou non pertinentes. Que ce soient des photos, des vidéos, des mails ou même des messages, l’utilisateur ne prend pas la mesure de la pollution numérique que cela représente, car il n’est plus encombré par des objets physiques ou des dossiers papier. 

Le Data Hoarder est le chef d’orchestre du stockage des données. C’est une personne qui prend plaisir à amasser, ordonner et collectionner un nombre de données pharamineuses. Il est également archiviste et peut être ingénieur. 

Description de la fonction du Data Hoarder

Un Data Hoarder à plusieurs missions, il est considéré comme un bibliothécaire numérique qui va préserver l’information et est également chargé de réparer les erreurs ou les mauvaises manipulations des utilisateurs.

Pourquoi a-t-on besoin d’un Data Hoarder ?

Tout d’abord pour les exigences légales et concurrentielles, ensuite pour la méfiance à l’égard des services cloud et enfin pour des raisons culturelles et familiales. 

Quelles sont les compétences nécessaires pour ce métier ?

  • Très bonne base en Excel 
  • Analytique UI 
  • Appétence pour les chiffres 
  • Habile avec les statistiques

Acquérir des compétences en Data Hoarding

 

Quels sont les outils qu’utilise le Data Hoarder ? 

Pour gagner en performance, il aura besoin d’une connexion Internet solide, une capacité de mémoire imposante, à la fois en local, et sur les serveurs. 

Wayback machine est une plateforme dédiée à l’archivage et au recensement. Elle représente une mine d’informations pour le Data Hoarder qui peut consulter des éléments préservés depuis plus de 30 ans et ainsi produire des statistiques adéquates.

Quelles sont les raisons pour lesquelles il fait cela ?

Plusieurs profils de Data Hoarder sont répertoriés : 

  • Le Hoarder Anxieux a peur de la suppression des données, ce qui peut mener à de graves conséquences psychologiques tel un trouble obsessionnel compulsif. 
  • Le Hoarder Collectionneur a de grandes capacités d’organisation. Il répertorie et classe toutes les données de manière scrupuleuse. 
  • Le Hoarder Docile exécute les tâches car on le lui a demandé. 
  • Le Hoarder Désengagé va archiver les données de personnes qui ne savent pas par où commencer pour nettoyer leur cyber-encombrement.

Conséquences du Data Hoarding

Malgré les nombreux avantages que présentent les actions d’un Data Hoarder, il persiste cependant certains aspects néfastes. Le fonctionnement des machines accumulant trop de données est considérablement ralenti; les disques durs emmagasinent trop d’informations ce qui altère la performance des outils.

Le surstockage est un facteur important de nuisance pour l’environnement. Les exigences énergétiques sont de plus en plus élevées et représenteraient actuellement 2% des émissions de gaz à effet de serre et seraient susceptibles d’augmenter à hauteur de 14% à horizon 2040. 

La constructions massives de Data Centers impactent dramatiquement la faune et la flore, menaçant certaines espèces et déséquilibrant l’écosystème.

Solutions face aux répercussions des datas centers sur l’environnement

  • Mettre en place des systèmes de refroidissement écologiques 
  • Utilisation d’énergies renouvelables
  • Adopter la technologie de l’IA

Si vous souhaitez vous reconvertir dans ce domaine, n’hésitez pas à découvrir notre formation Data Scientist.

Découvrir la formation Data Scientist

 

Définitions

Data Strategist : Quels sont les outils et missions de cet expert ?

Dans cet article, vous découvrirez ce qu’est le métier de Data Strategist. Vous allez pouvoir vous familiariser avec les différentes missions, les compétences indispensables et les outils de ce métier tant recherché ainsi que les atouts que ce rôle représente pour une entreprise et dans votre carrière.

Pour commencer, vous devez savoir qu’un Data Strategist est la personne qui va prendre en charge la gestion et l’analyse des données. Il va ensuite agir auprès des structures afin d’identifier les besoins de son activité principale et par la suite il élaborera un projet de développement, capable d’impacter des domaines aussi variés que le marketing, l’IT ou le business.

Quelles sont les missions d’un Data Strategist ?

  • Exécution de la stratégie avec le Chief Data Officer
  • Proposition de réponse innovantes et créatives dans le domaine de la data
  • Planification et chefferie de projets
  • Accompagnement des clients dans la compréhension de l’impact du Big Data
  • Conception, architecture et développement de solution d’intelligence artificielle
  • Développement des options dans le domaine de la Big Data
  • Analyse de leads 
  • Assistance aux équipes de développement commercial dans les activités d’avant-vente et les appels d’offres

Diagramme de Venn pour le Data Strategist

Les trois cercles présents dans ce diagramme représentent les trois domaines de connaissances les plus importants pour un Data Strategist :

  • Business
  • Communication
  • Data & Technologie

Le Data Strategist travaille principalement sur le côté business de la data. Il devra proposer des idées afin d’améliorer l’expansion de l’entreprise ou son organisation. À l’instar d’un chef de projet, il encadre les équipes fonctionnelles, recueille le besoin, gère les plannings, définit la stratégie technique et commerciale mais dans le domaine spécifique de la Big Data.

Quelles sont les compétences que doit avoir un Data Strategist ?

  • Diplôme d’une école de commerce ou d’ingénieur
  • Expériences significatives en Data Strategy, Data Gouvernance, Data Management
  • Maîtrise des technologies de gouvernance, Master Data Management, Analytics, Intelligence Artificielle, Business Intelligence
  • Aptitude en relation humaines et communication
  • Niveau d’anglais courant
  • Bonne compréhension du Machine Learning
  • Appétence pour l’analyse statistique
  • Esprit d’entreprise
  • Compétences en matière d’organisation

Quels sont les outils utilisés ?

Le Data Strategist utilise principalement Microsoft Power BI, qui est une solution d’analyse de données et un outil incontournable dans ce domaine, permettant d’effectuer les tâches suivantes :

  • La transformation des données
  • La modélisation et visualisation des données
  • La configuration de tableaux de bord, de rapports et applications

Pour permettre la mise en place d’un projet Cloud dans son intégralité, vous aurez besoin de maîtriser AWS qui régit les fonctions suivantes :

  • Conception des architectures résilientes et sécurisées
  • Infrastructure mondiale et fiabilité
  • Réseaux
  • Stockage base de données
  • Présentation du Well Architect Framework et des avantages du cloud

Les atouts de la profession

Les métiers de la data (Data Strategist, Data Scientist, Data Analyst ou Data Engineer) sont en pleine expansion. Peu de profils compétents sont disponibles sur le marché et les entreprises souffrent d’un cruel manque de ressources pour gérer et traiter leurs données.
C’est un domaine dans lequel vous trouverez pleine et entière satisfaction professionnelle, tant sur le plan de la stimulation intellectuelle que sur la montée en compétences constante, où les perspectives d’évolution sont prometteuses.
En complément des points spécifiés en amont, le salaire d’un Data Strategist représente un attrait supplémentaire. Il est évalué selon plusieurs critères :

  • Le niveau d’étude
  • Les compétences acquises
  • Les différentes expériences dans le domaine
  • Le type de structure qui recrute

De manière générale, la rémunération est plus élevée dans le privé que dans le secteur public, dont l’indice n’est pas forcément réévalué annuellement. La fourchette salariale pour la profession se situe entre 34000€ et 58000€ brut.
Vous savez maintenant tout sur le métier de Data Strategist.
Si vous souhaitez vous reconvertir dans ce domaine, n’hésitez pas à découvrir notre formation Power BI et AWS.

Comment apprendre?, Formations

Formation DevOps : pourquoi et comment devenir expert certifié ?

Alors que la méthode DevOps connaît un essor sans précédent, suivre une formation DevOps permet d’acquérir une expertise très recherchée en entreprise et hautement rémunérée. Découvrez pourquoi et comment suivre un tel programme !

Le monde a changé, transformé par internet et les logiciels. Dans toutes les industries, les applications logicielles occupent désormais une place essentielle en entreprise.

Ceci est valable pour tous les secteurs, de la banque au divertissement en passant par le commerce de détail ou la santé. Le logiciel fait désormais partie intégrante de toutes les divisions d’un business.

Des services en ligne sont utilisés par les entreprises pour interagir avec leurs clients, mais aussi pour optimiser la logistique et accroître la productivité au quotidien. Par conséquent, les exigences en termes de qualité ont fortement augmenté.

Les bugs et les dysfonctionnements ne sont plus tolérables, et de nouvelles fonctionnalités doivent être constamment ajoutées au fil du temps. Afin de s’adapter à ces nouvelles attentes, les entreprises adoptent désormais le modèle DevOps.

En combinant le développement et l’exploitation, le DevOps permet aux développeurs de mettre à jour leurs logiciels en continu en se basant sur les retours des utilisateurs. De même, les problèmes techniques peuvent être résolus beaucoup plus rapidement.

Le logiciel est évalué continuellement, et mis à jour en fonction. Cette méthodologie permet des logiciels plus stables, et par extension un produit de meilleure qualité pour l’utilisateur final.

Le DevOps s’impose aujourd’hui comme la principale approche du développement logiciel. Pour cette raison, les ingénieurs DevOps sont très recherchés en entreprise.

Ces experts sont hautement rémunérés, et le nombre d’offres d’emploi explose d’année en année. Suivre une formation DevOps permet d’acquérir toutes les compétences requises pour exercer cette profession.

Qu’est-ce que le DevOps ?

DevOps est une approche du développement logiciel. Elle repose sur la collaboration entre l’équipe de développement (Dev) et l’équipe d’exploitation (Ops).

Cette collaboration a lieu à toutes les étapes du développement logiciel, incluant la conception du produit, le testing, le déploiement et la maintenance technique.

 

En savoir plus sur le DevOps

Il s’agit d’un ensemble de pratiques et d’outils, mais aussi d’une culture et d’une philosophie permettant à une organisation de délivrer des applications et services beaucoup plus rapidement qu’avec les processus traditionnels.

Auparavant, les développeurs et les ops travaillaient en silo. Les développeurs étaient chargés de créer le logiciel, et l’équipe d’exploitation le prenait ensuite en charge intégralement.

Cette méthode présentait de nombreux défauts, et c’est pourquoi DevOps a vu le jour. Les deux équipes sont désormais unies, et les ingénieurs DevOps travaillent sur l’application tout au long de son cycle de vie : du développement au déploiement en passant par le testing, puis à l’exploitation au quotidien.

Les équipes DevOps automatisent les processus historiquement lents et manuels, et utilisent un stack technologique permettant de gérer et d’améliorer les applications de façon rapide et fiable.

En outre, cette nouvelle approche priorise le bon fonctionnement du logiciel. Ceci évite à la fois la frustration des équipes internes, et celle de l’utilisateur final.

Pourquoi suivre une formation DevOps ?

Suivre une formation DevOps permet d’accéder au métier d’ingénieur DevOps. Toutefois, un tel cursus peut s’avérer bénéfique pour tout professionnel impliqué dans la création de logiciels. Ceci concerne aussi bien le développement que l’exploitation quotidienne.

De manière générale, DevOps apporte de nombreux avantages aux organisations. Cette méthode permet tout d’abord de raccourcir le cycle de production, en éliminant les silos fonctionnels via la collaboration entre les équipes.

Elle permet également d’accroître le taux de succès des déploiements, en offrant la capacité de détecter les erreurs de programmation de manière précoce. Là encore, la collaboration permet de résoudre les problèmes techniques très rapidement.

Un autre avantage est l’automatisation des processus manuels de développement et de testing. En mettant l’accent sur la qualité du logiciel tout au long du processus de développement, DevOps réduit aussi les risques d’imprévus. Dans la même logique, l’approche DevSecOps consiste à ajouter la sécurité au cycle de développement pour éviter les problèmes par la suite.

Par ailleurs, une formation certifiante DevOps permet d’accroître votre employabilité et votre valeur sur le marché du travail. Les ingénieurs DevOps et autres experts comptent parmi les professionnels les plus recherchés et les mieux rémunérés du domaine de l’informatique.

À titre indicatif, selon Glassdoor, le salaire annuel moyen aux États-Unis s’élève à 92 000 $ pour un DevOps Release Manager, 125 000 $ pour un ingénieur de fiabilité des sites (SRE) et 115 000 $ pour un ingénieur DevOps. En France, selon Talent.com, un manager DevOps gagne 58 000 $ par an, un ingénieur DevOps 45 000€ par an, et un SRE 60 000€ par an.

Selon une étude de Grand View Resarch, le marché mondial du DevOps atteindra une valeur de 12,85 milliards de dollars en 2025. De plus, le Bureau of Labor Statistics des États-Unis prévoit une augmentation des offres d’emploi de 22% jusqu’en 2030 pour l’industrie du logiciel, contre 8% pour l’ensemble des emplois.

Quel est le programme d’une formation DevOps ?

Commencer une formation DevOps

En choisissant de suivre une formation DevOps, vous pourrez acquérir toutes les compétences requises pour devenir un professionnel de ce domaine. Voici les différentes notions que l’on retrouve dans ces cursus.

Tout d’abord, un langage de programmation comme Python est indispensable pour écrire des scripts et automatiser les tâches. Dans certains cas, la maîtrise de VB-Script et Windows PowerShell est également requise pour un poste DevOps.

L’expert doit aussi savoir créer des tests automatisés à l’aide d’outils dédiés. Ces derniers doivent être incorporés au processus de relaxe automatisé du logiciel.

Les ingénieurs DevOps passent aussi beaucoup de temps sur la configuration des systèmes d’automatisation. Ils doivent aussi maîtriser l’infrastructure en tant que code (IaC) pour configurer l’infrastructure et l’environnement à l’aide d’un langage de programmation.

Une autre compétence essentielle du DevOps est le maniement des systèmes de gestion de version comme Git. Ces outils permettent le suivi des changements apportés à la base de code, et la restauration des versions précédentes en cas de problème.

Par ailleurs, de solides compétences en networking sont indispensables. La connaissance du protocole IP, des certificats et du routing est un précieux atout pour résoudre les éventuels problèmes liés au réseau. Même au sein d’un environnement cloud ou d’un conteneur, il est important de savoir comment fonctionnent les réseaux.

 

Quels sont les principaux outils DevOps ?

Une formation DevOps permet aussi d’apprendre à manier les outils DevOps les plus populaires. En guise d’exemple, on peut citer Puppet permettant de délivrer et déployer des changements rapidement et fréquemment sur un logiciel avec des fonctionnalités de gestion de version, de testing automatisé et de livraison continue.

Avec Ansible, les équipes peuvent automatiser tout le cycle de vie d’une application et gérer les déploiements les plus compliqués. Un autre outil de gestion continue est Chef.

Les experts DevOps doivent aussi manier les solutions d’intégration continue comme Travis CI, Bamboo et Jenkins. L’outil de conteneurisation Docker permet de tester des applications au sein d’un environnement isolé incluant le système d’exploitation et toutes les dépendances, sur un serveur ou une machine virtuelle.

Nagios permet quant à lui la surveillance de l’infrastructure IT, et aide à détecter les erreurs pour les corriger rapidement. C’est un outil de monitoring continu, à l’instar de Sensu et Splunk.

Les certifications DevOps

Les meilleures formations DevOps permettent d’obtenir une certification professionnelle. Un tel titre vous permet d’étoffer votre CV, d’augmenter vos prétentions salariales, et de démontrer votre expertise.

Il existe de nombreuses certifications DevOps, mais certaines sont plus reconnues que d’autres par les employeurs. Voici quelques exemples des plus valorisées.

La certification AWS Certified DevOps Engineer démontre la capacité à tester et déployer l’infrastructure et les applications AWS. Elle témoigne aussi d’une expertise sur les plateformes cloud en général, notamment pour l’implémentation et l’automatisation des processus de gouvernance ou des contrôles de sécurité.

Amazon Web Services étant la plateforme de cloud public la plus utilisée, ses certifications comptent parmi les plus demandées en entreprise. Selon Indeed, on comptait plus de 32 000 postes d’ingénieurs DevOps AWS début 2022, rien qu’aux États-Unis. Cette certification est idéale pour les ingénieurs DevOps travaillant sur AWS ou un autre cloud.

En guise d’alternative, la certification Azure DevOps Engineer Expert est également très reconnue. Elle démontre la maîtrise des processus DevOps, et plus particulièrement la capacité à travailler avec des personnes, des processus et des technologies pour délivrer une valeur continue.

Vous devrez manier les stratégies d’ingénierie de fiabilité des sites, de sécurité et de conformité. Les compétences en gestion de version, en intégration continue et en collaboration sont également évaluées. De plus, la maîtrise du cloud Microsoft Azure est attendue pour cette certification spécialisée.

La certification Docker Certified Associate (DCA) confirme la maîtrise de l’outil Docker simplifiant le développement et le déploiement de logiciels grâce aux conteneurs. Il s’agit d’un outil phare du DevOps, notamment pour le testing continu.

Pour l’obtenir, vous devrez apprendre à manier Docker et les conteneurs en général. Les compétences en orchestration, création d’images, gestion, installation, configuration ou encore en sécurité sont nécessaires. Comptez environ un an d’expérience sur Docker pour réussir l’examen.

La certification Certified Kubernetes Administrator (CKA) indique une capacité à gérer et configurer des clusters sur Kubernetes : la plateforme open source de gestion de conteneurs logiciels.

Elle s’adresse aux professionnels IT gérant des instances Kubernetes, tels que les administrateurs Kubernetes et les administrateurs cloud. Pour l’obtenir, vous devrez prouver vos connaissances en architecture de cluster, en installation, en configuration, en networking, en workloads et en stockage.

Les professionnels DevOps utilisent aussi Puppet pour automatiser les processus, afin de délivrer des changements d’infrastructure plus rapidement et créer de meilleurs logiciels. Cet outil de gestion de système permet d’automatiser et de gérer la configuration de serveur.

Ainsi, l’examen Puppet Certified Professionnal permet d’obtenir une certification validant la maîtrise du logiciel Puppet. Vos compétences techniques et votre expérience seront mises à l’épreuve, et vous devrez comprendre les concepts liés aux stratégies de classification, à la résolution de problèmes dans le code, à la création de modules, à l’orchestration ou à l’administration.

Comment suivre une formation DevOps ?

Pour acquérir une expertise DevOps, vous pouvez choisir DevUniversity. Nos formations vous permettent d’apprendre à manier les outils DevOps, et à appliquer les meilleures pratiques liées à cette méthodologie.

Le cursus se complète intégralement à distance, et notre organisme est éligible au Compte Personnel de Formation pour le financement. N’attendez plus et découvrez DevUniversity !

S’inscrire à une formation DevOps

Définitions

Validation croisée ou « cross validation » : Qu’est ce que c’est ?

Il existe plusieurs outils statistiques destinés à évaluer les performances des différents modèles d’apprentissage automatique. Le cross validation, aussi appelé « validation croisée », en fait partie. Fondée sur une technique d’échantillonnage, la validation croisée est utilisée en Machine Learning pour évaluer des modèles d’apprentissage-machine. 

Qu’est-ce que la validation croisée ? Quelles sont les différentes techniques de validation ? Pourquoi utiliser un jeu de données équilibrées ? Comment devenir un professionnel en validation croisée ? Les réponses à ces questions dans cet article.

Qu’est-ce que la validation croisée ?

La validation croisée : une technique d’échantillonnage

Très souvent utilisée en apprentissage automatique, la validation croisée est une technique d’évaluation permettant d’estimer la fiabilité d’un modèle d’apprentissage automatique. Plus explicitement, il s’agit d’une technique de rééchantillonnage. Elle repose sur un principe simple : utiliser un ensemble de données pour ensuite les diviser en deux catégories. Ce sont :

  • les données d’entraînement utilisées pour entraîner le modèle,
  • les données test utilisées pour la prédiction.

Pourquoi une validation croisée est-elle indispensable ?

Une Machine Learning fait appel à plusieurs modèles d’apprentissage automatique. C’est en partant de ces modèles que la validation croisée estime la fiabilité d’un modèle. Chaque modèle d’apprentissage est fondé sur des sous-ensembles de données d’entrée.
Via une technique d’échantillonnage, la validation croisée atteste si une hypothèse est valide ou non. Elle facilite donc le choix d’un algorithme adapté pour réaliser une tâche définie. On a également recours à la validation pour détecter un surajustement. En se basant sur un échantillon de prétendument issu de la même population d’échantillons d’apprentissage, la validation croisée :

  • ne modélise pas les données de la même manière,
  • démontre l’échec de la généralisation d’une tendance.

Une validation croisée permet d’estimer la fiabilité et la précision du modèle. À partir du moment où le modèle fonctionne sur les données de test, cela signifie qu’il n’a pas réajusté les données d’entraînement. Autrement dit, il peut tout à fait être utilisé pour la prédiction.

Se former au cross validation

Quelles sont les différentes techniques de validation croisée ?

On dénote plusieurs techniques de validation croisée. Les principales sont :

  • le train-test split,
  • la méthode k-folds.

Le train-test split

Le principe de base du train-test split est de décomposer l’ensemble des données de manière aléatoire. Une partie servira à entraîner le modèle de Machine Learning. L’autre partie, quant à elle, permet de réaliser le test de validation. En règle générale, 70 à 80 % des données seront destinés à l’entraînement. Le reste, c’est-à-dire les 20 à 30 %, seront exploités pour le cross validation.
Cette technique s’avère fiable et très efficace. Toutefois, les données disponibles sont limitées. Puisque certaines données n’ont pas été utilisées pour l’entraînement, les informations peuvent donc être manquantes. Ce qui risque de biaiser hautement les résultats. Par contre, la technique du train-test split convient parfaitement à partir du moment où il y a une distribution égale entre les deux échantillons.

La méthode k-folds

Très facile à appréhender et très populaire, la méthode k-folds est l’une des méthodes les plus utilisées par les professionnels. Elle consiste à diviser l’échantillon original en échantillons ou en blocs. De cette façon, l’ensemble des données apparaitra aussi bien dans l’ensemble des données d’entraînements que dans l’ensemble des données test.
Un paramétrage unique dénommé « K » est inséré dans la procédure. Idéalement, K devrait avoir une valeur ni trop basse ni trop haute : entre 5 et 10 selon l’envergure du dataset. Par la suite, il convient d’ajuster le modèle en utilisant des folds K-1 (moins 1). On répétera ce processus jusqu’à ce que tous les K-folds servent au sein de l’ensemble d’entraînement.
La moyenne des scores enregistrés représente la métrique de performance du modèle. À noter que la méthode k-folds peut s’effectuer manuellement ou à l’aide des fonctions cross_val_score et cross_val_predict. Ces dernières se trouvent dans la bibliothèque Python Scikit Learn.

Maîtriser les techniques de validation croisée

Pourquoi utiliser un jeu de données équilibrées ?

En présence d’un jeu de données déséquilibrées, il devient plus difficile de réaliser une cross validation. D’une manière plus concise, une base de données est déséquilibrée quand le nombre d’observations par classe n’est pas le même d’une classe à une autre. Résultat : les algorithmes se trouvent biaisés.
Pour renflouer leur fonction de perte, les algorithmes optimisent les métriques. Ils auront tendance à générer un classifieur trivial regroupant chaque exemple dans la classe majoritaire. Par conséquent, le modèle obtenu ne sera que le reflet de la surreprésentation de la classe majoritaire. Pour y remédier, bon nombre de professionnels ont recours à la validation croisée stratifiée ou « stratified cross validation ».
Cette méthode a pour but principal de s’assurer que la répartition des classes soit la même au niveau de tous les ensembles de validation et d’apprentissage à utiliser. Face à un jeu de données déséquilibrées, générer des échantillons synthétiques constitue une excellente alternative.