Browsing Category

Formations

Formations

Power BI API : Tutoriel complet sur cette fonctionnalité

Les APIs permettent de connecter Power BI à des sources de données externes. Découvrez tout ce que vous devez savoir sur ces interfaces, et comment maîtriser la plateforme de Microsoft.

Il existe plusieurs façons d’assembler les données pour les rapports Power BI. Outre les fichiers Excel et les bases de données sur site ou sur le cloud, les APIs sont de plus en plus utilisées.
De nombreuses organisations fournissent des données par le biais d’APIs, dont les agences gouvernementales, les entreprises de médias, les fournisseurs de services logiciels ou même les ONG.
Ces outils peuvent aussi être utilisés en interne par les entreprises souhaitant intégrer des données entre de multiples systèmes. C’est l’un des cas d’usage les plus courants de Power BI et autres plateformes de reporting.
Même si la source de données principale d’un rapport est généralement interne, comme une Data Warehouse, il est possible d’enrichir les données existantes grâce à une API.
Il peut s’agir par exemple de données économiques et démographiques de la Banque Mondiale, des données des réseaux sociaux, des taux d’échange actuels ou même d’informations sur Wikipedia. Il existe de nombreuses APIs permettant d’obtenir de telles données.

Qu’est-ce que Power BI ?

Power BI est la plateforme de Business Intelligence de Microsoft. Cet outil self-service permet à tous les employés d’une entreprise d’analyser et de visualiser les données.
Il s’agit d’une suite logicielle regroupant plusieurs composants pour la collecte, l’analyse et la visualisation de données, le reporting et la création de tableaux de bord.
Les avantages de Power BI sont une interface intuitive, une accessibilité sur PC, mobile et cloud, et une connectivité avec de nombreux logiciels et sources de données.

Qu’est-ce qu’une API ?

Le terme API est l’acronyme de « Application Programming Interface ». Il existe une large diversité d’APIs dans le domaine de l’informatique.
Différentes technologies permettent de délivrer les APIs, comme REST et SOAP. Chacun a ses propres mécanismes et capacités, et peut retourner les données dans différents formats comme JSON ou XML.
Heureusement, chaque API s’accompagne d’une documentation détaillant son fonctionnement. Elle indique notamment les définitions, les valeurs de requêtes autorisées, les limitations, des exemples d’usage et les formats de données.
Les APIs gratuites et publiques ne requièrent aucune authentification, mais les APIs privées et commerciales peuvent exiger une clé ou un mot de passe.
Les APIs de données web comme celle de Wikipedia permettent d’effectuer une requête en entrant une simple adresse URL dans un navigateur web.

Qu’est-ce qu’une API REST ?

Une API REST est un style d’architecture logicielle conçue pour guider le développement et le design de l’architecture du World Wide Web. Elle définit un ensemble de contraintes pour la façon dont l’architecture système doit se comporter.
Les APIs REST offrent une façon flexible et légère d’intégrer les applications. Elles permettent d’effectuer des recherches en envoyant des requêtes à un service, et renvoient des résultats en provenance de celui-ci.
Les éléments composant l’API Rest sont les headers indiquant le mode d’authentification et les types de contenu, la méthode d’appel telle que POST et GET, le endpoint sous forme d’URL et les données textuelles au format JSON.
Pour accéder à la REST API de Power BI, il est nécessaire de demander au préalable un token avec lequel vous pourrez appeler l’API et exécuter les fonctions.

À quoi sert la REST API de Power BI ?

La REST API de Power PI délivre des endpoints de service pour l’intégration, l’administration, la gouvernance ou les ressources utilisateurs. Elle permet d’organiser le contenu Power BI, d’exécuter des opérations administratives ou encore d’intégrer du contenu en provenance de Power BI.

Maîtriser la REST API de Power BI

Son avantage est de permettre de construire des applications personnalisées délivrant les données sur un tableau de bord Power BI à l’aide d’un accès programmatique aux composants du tableau de bord : datasets, tableaux, lignes…
Elle permet de créer, d’obtenir ou de modifier des ensembles de données, des tableaux, des couloirs, des groupes, ou encore des tableaux de bord. Voici comment procéder pour établir une connexion entre Power BI et une source de données via la REST API.
La première étape est d’enregistrer une application à partir du Portail Développeur de Power BI. Vous devez ensuite conférer à l’utilisateur l’autorisation d’accéder à l’application, et générer un token d’accès à l’aide de la méthode POST.
Par la suite, vous pouvez utiliser la REST API de Power BI pour assembler les données dont vous avez besoin. Il peut s’agir par exemple d’une liste de rapports ou d’ensembles de données en provenance de votre espace de travail personnel.

Qu’est-ce que la DAX REST API de Power BI ?

Depuis le mois d’août 2021, la nouvelle API REST de Power BI permet d’effectuer des requêtes de datasets en utilisant le langage DAX. Cette API REST DAX évite les dépendances aux librairies client Analysis Services, et ne requiert pas de connexion aux endpoints XMLA.
Il est possible dans presque n’importe quel environnement de développement moderne et sur n’importe quelle plateforme dont les applications no-code Power Apps, les langages basés JavaScript ou le langage Python. Toute technologie permettant l’authentification avec Azure Active Directory et la construction d’une requête web est compatible.

Qu’est-ce que la Client API de Power BI ?

L’API Client de Power BI est une librairie client side permettant de contrôler programmatiquement le contenu intégré Power BI en utilisant JavaScript ou TypeScript.
Cette API permet la communication entre les éléments de Power BI tels que les rapports et les tableaux de bord, et le code d’application. Ainsi, vous pouvez concevoir une expérience utilisateur selon votre propre design.

Comment connecter Power BI à une API ?

La connexion entre Power BI est une API nécessite d’utiliser un connecteur de source de données web. On entre ensuite le endpoint de l’API et ses paramètres en guise d’URL.
Après avoir fourni les détails d’authentification requis par l’API, il ne reste qu’à formater les résultats de la requête dans un format de tableau pouvant être intégré au modèle Power BI.
Par défaut, Power BI essayera automatiquement de convertir les résultats JSON vers un format de tableau. Le format XML requiert un peu plus d’efforts, et les étapes spécifiques peuvent varier.

Comment apprendre à manier Power BI ?

Une connexion API apporte de nombreux avantages pour le reporting sur Power BI. Elle peut notamment permettre d’enrichir les données grâce à des sources externes, ou fournir une façon plus flexible de connecter ses données au cloud. Il existe de nombreuses APIs disponibles gratuitement sur le web.
Toutefois, pour maîtriser Power BI et toutes ses fonctionnalités, vous pouvez choisir DataScientest. Nous proposons une formation Power BI permettant à un débutant d’acquérir la maîtrise complète de l’outil en seulement cinq jours.
Notre cursus s’effectue intégralement à distance, via internet. En tant que Microsoft Learning Partner, DataScientest vous permet d’obtenir la certification PL-300 Power BI Data Analyst Associate à la fin du parcours.
Pour le financement, notre organisme est reconnu par l’Etat est éligible au Compte Personnel de Formation. N’attendez plus, et découvrez DataScientest !

Découvrir la formation Power BI

Vous savez tout sur Power BI et les APIs. Pour plus d’informations sur le même sujet, découvrez notre dossier complet sur Power BI et notre dossier sur la Business Intelligence.

Formations

Formation Power BI : les différents types de cours

Microsoft Power BI est une famille d’outils de Business Intelligence. À partir des données d’une entreprise, il permet de générer des rapports et donc des informations d’aide à la décision.

Le terme « famille d’outils » est ici employé, car les éléments qui composent Power BI sont nombreux. Les principaux sont :

          Power Bi Desktop: une application de bureau qui peut être téléchargée gratuitement sur PC. C’est l’outil principal pour le traitement des données et la création de rapports.

          Power bi Service : l’environnement Cloud où les rapports créés avec Power Bi Desktop sont publiés, analysés et partagés. On s’y connecte via un compte Microsoft.

          Power bi Mobile : les rapports peuvent également être analysés via une application pour appareils mobiles (Smartphones et tablettes).

Les utilisateurs de Power BI comprennent à quel point cet outil est incontournable. C’est la raison pour laquelle des cours spécifiques à destination de spécialistes des données et des TIC sont proposés par différents établissements et centres de formation.

Power BI pour les développeurs

Bien que Power BI soit un logiciel gratuit, en tant que service (SaaS), il permet d’analyser des données et de partager des connaissances. Les tableaux de bord Power BI offrent une vue à 360 degrés des métriques les plus importantes en un seul endroit, avec des mises à jour en temps réel et une accessibilité sur tous les appareils.

Une formation Power BI à destination des développeurs consiste à apprendre à utiliser l’outil pour développer des solutions logicielles personnalisées pour les plateformes Power BI et Azure. Au terme de la formation, les étudiants auront acquis les compétences suivantes :

          Configurer des tableaux de bord en temps réel

          Créer des visualisations personnalisées

          Intégrer des analyses riches dans des applications existantes

          Intégrer des rapports interactifs et visuels dans des applications existantes

          Accéder aux données depuis une application

Création de tableaux de bord à l’aide de Microsoft Power BI

Cette formation couvre à la fois Power BI sur le web et Power BI Desktop. Elle s’adresse généralement aux chefs d’entreprise, aux développeurs, aux analystes, aux chefs de projet et aux chefs d’équipe. L’objectif est que les étudiants acquièrent une compréhension de base des sujets ci-dessous, ainsi qu’une capacité à utiliser et à mettre en œuvre les concepts appris.

          Power BI

          Power BI Desktop

          Utilisation de feuilles de calcul CSV, TXT et Excel

          Connexion aux bases de données

          Fusionner, regrouper, résumer et calculer des données

          Création de rapports

Conception du tableau de bord Power BI

Power BI est l’un des outils de visualisation de données les plus populaires et un outil de Business Intelligence. Il propose une collection de connecteurs de bases de données, d’applications et de services logiciels qui sont utilisés pour obtenir des informations de différentes sources de données, les transformer et produire des rapports. Il permet également de les publier pour pouvoir y accéder depuis des appareils mobiles. Mais, cela nécessite la conception de tableaux de bord.

Une formation axée sur la création de tableaux de bord s’adresse aux chefs d’entreprise, aux analystes commerciaux, aux Data Analysts, aux développeurs et aux chefs d’équipe qui souhaitent concevoir un tableau de bord Power BI parfait. À l’issue de cette formation, les participants pourront :

          Concevoir des tableaux de bord beaux et efficaces en suivant les règles critiques

          Choisir les bons graphiques en fonction du type de données à afficher

Data Analytics Process, solutions Cloud et solutions Power BI

Cette formation consiste à avoir une prise en main des solutions Cloud disponibles, des processus d’analyse de données nécessaires pour travailler avec des données dans le Cloud et des outils Power BI pour analyser les données.

L’objectif de la formation est d’apporter aux participants la capacité de :

          Installer et configurer Power BI

          Évaluer les différentes solutions de données offertes par les fournisseurs de cloud tels qu’Azure

          Acquérir une compréhension des différentes structures, approches de modélisation et conceptions de Data Warehouses utilisées pour stocker, gérer et accéder au Big Data.

          Appliquer des outils et des techniques pour nettoyer les données en vue de l’analyse.

          Construire des solutions de reporting et d’analyse basées sur des données sur site et dans le Cloud.

          Intégrer des solutions d’analyse de données à un Data Warehouse

          Atténuer les risques de sécurité des données et assurer la confidentialité des données

Excel vers Power BI

Exporter un fichier Excel vers Power BI est une connaissance essentielle aux Data Analysts qui souhaitent apprendre des techniques pour préparer des données dans Excel, puis les visualiser dans Power BI. Ainsi, ils pourront :

          Comprendre les principes de l’analyse des données, les objectifs de l’analyse des données et les approches de l’analyse des données

          Utiliser les formules DAX dans Power BI pour des calculs complexes

          Mettre en place des visualisations et des graphiques pour des cas d’analyse particuliers

devops
Formations

Quelle sont les spécificités d’une formation DevOps ?

Avec le progrès de la méthode Agile, la démarche DevOps est devenue un mode d’organisation du travail particulièrement populaire dans le milieu du développement logiciel. Dans les faits, elle consiste à réunir les services de développement et des opérations dans une unique suite de déploiements continus. ​

Ainsi le développement et la mise en place sont réalisés de manière simultanée et cela permet de pallier les faiblesses de communication qui pouvaient exister entre ces deux pôles, les retours sont plus rapides et le développement est par conséquent plus efficace puisqu’il s’inscrit dans un unique flux de travail. Ce mode d’organisation possède de nombreux avantages aussi bien du point de vue de la qualité que de la rapidité. Si vous souhaitez en savoir plus sur le DevOps, vous pouvez consulter notre article détaillé sur le sujet.

De son côté, DataScientest est un organisme spécialisé dans la formation dans les métiers et les compétences liés au développement et à la data depuis 2016. Nos formations ont été co-construites avec les groupes avec lesquels nous travaillons maintenant depuis plusieurs années et qui continuent aujourd’hui à nous faire confiance. C’est pourquoi nous avons mis notre savoir-faire dans la formation au service de la conception d’une formation DevOps.

Quels sont les prérequis pour pouvoir accéder à une telle formation ?

Le métier de DevOps est exigeant aussi bien techniquement que théoriquement. Bien que cela ne soit pas nécessairement obligatoire, il demeure néanmoins très intéressant avant de suivre une telle formation de maîtriser les bases d’un ou plusieurs langages de programmation tels que Javascript, Go ou encore Python. Pour ce qui est du niveau mathématique attendu, un niveau équivalent à celui d’un Bac +2. Ces prérequis peuvent vous permettre d’être très à l’aise lors du suivi de votre formation, mais leur absence ne doit pas pour autant vous dissuader de vous lancer dans votre projet de formation. Il est en effet toujours possible de rattraper le niveau requis !  DataScientest propose par exemple une formation Python qui peut être votre première approche avec un langage de programmation.​

python-programing

Quel est le contenu d’une formation DevOps ?

​Le DevOps doit posséder un solide bagage technique et maîtriser un vaste ensemble d’outils. Pour ce qui est des langages de programmation qu’il doit maîtriser, on retrouve évidemment les grands classiques du développement web comme HTML, CSS, PHP ou encore Ruby. Néanmoins d’autres langages sont également nécessaires notamment pour ce qui touche au développement d’applications tels que Python ou Java. Pour ce qui est des outils du DevOps, ce sont par exemple les outils d’intégration comme Jenkins ou alors les différents CMS comme Drupal.

Parallèlement à ses compétences techniques, le DevOps doit également posséder un ensemble de qualités qui lui seront d’une grande aide lors de l’exercice de son activité. Il lui est par exemple impératif de faire preuve d’une grande rigueur et d’une bonne capacité d’autonomie afin de faire cohabiter ses deux activités. Par ailleurs, le DevOps doit également être passionné par son domaine d’activité puisque ce domaine évolue rapidement, il lui incombe donc de mettre à jour régulièrement ses connaissances. Pour cela, Data Scientist publie régulièrement des articles sur son blog afin que vous puissiez rester au courant des dernières actualités du milieu du développement et de la data.

Suivre une formation Data Scientist

Quels sont les objectifs d’une formation DevOps ?

Le poste de DevOps présente de multiples intérêts. Tout d’abord, ses missions sont variées et cette formation ouvre donc les portes sur une profession très peu répétitive. Parmi ses principales activités, on trouve la mise en place d’applications mais également l’instauration de tests puis la surveillance du bon fonctionnement des applications précédemment implantées.

D’autre part, une telle formation ouvre les portes à un marché de l’emploi très favorable puisque les profils de DevOps sont aujourd’hui particulièrement sollicités tout simplement car le volume de données à traiter continuent de croître et car la transformation digitale des entreprises s’accélère. Certains enjeux au cœur du métier de DevOps comme la sécurité des données deviennent donc cruciaux pour tous les champs d’activité.

transformation-digitale

Les perspectives d’évolution pour un DevOps sont multiples et permettent de prétendre à terme à des postes comme lead tech, CTO ou encore ingénieur réseau et structure. Pour ce qui est de la rémunération, un DevOps peut prétendre à environ 36 000€ annuel en salaire avec une possibilité d’augmentation rapide jusqu’à 60k€-90k€ annuel. Il s’agit d’un des métiers les plus demandés en France ce qui exerce une pression à la hausse sur les salaires.

Quel est l’avantage de réaliser une formation DevOps au sein de DataScientest ?

Notre organisme propose une formation DevOps dont le support de cours est conçu par nos experts directement en interne. Ce sont ces mêmes professeurs qui forment notre équipe pédagogique et qui vont mettre en  place un accompagnement personnalisé tout au long de la formation. Parallèlement à un enseignement de qualité, DataScientest s’engage également à fonder un véritable accompagnement pour ses apprenants. À partir du milieu des formations et jusqu’à l’emploi, nos apprenants sont accompagnés par notre pôle carrière qui peut vous aider à mettre en forme votre CV, mais également à préparer vos entretiens. DataScientest est aujourd’hui le leader de la formation data en B2B et nous disposons de nombreux partenaires que nous pouvons mettre en relation avec nos apprenants. Par ailleurs, nos apprenants représentent désormais une communauté de plus de 3000 alumni et nous instaurons en véritable esprit de promotion à l’aide de différents ateliers tout au long de la formation.

Découvrir les formations data de DataScientest

formation-data-engineer.jpg
Formations

Qu’attendre d’une formation data engineer ?

Le data engineer est l’une des professions les plus demandées ces dernières années. Connaissant une grande croissance, il s’agit de l’une des professions les plus rémunératrices au même titre que le métier de data scientist (data science, Machine Learning…). L’augmentation massive des données générées et des technologies qui ont émergé autour d’elle en sont les principales causes. Alors, que ce soit via une formation data engineer à distance ou dans une école d’informatique, qu’acquiert-on en apprenant à devenir un expert du data engineering ?

Des notions de base

Parmi les notions de base que les futurs data engineers devraient acquérir se trouve Linux. Ce système d’exploitation est le plus utilisé dans les déploiements Cloud et Big Data. Un data engineer doit au moins être à l’aise avec ces technologies. Ainsi, il peut éditer facilement des fichiers, exécuter des commandes et naviguer dans le système.

Il doit aussi maîtriser un langage de programmation comme Python. Ce point inclut la possibilité d’interagir avec les API et d’autres sources de données de manière simple et directe.

Par définition, le Big Data se déroule généralement dans des systèmes distribués. Ces derniers font partie des connaissances fondamentales qu’un bon ingénieur de données doit acquérir. Ces systèmes présentent de nombreuses particularités concernant la réplication des données, la cohérence, la tolérance aux pannes, le partitionnement et la concurrence. À ce stade, la formation comprend des technologies telles que HDFS, Hadoop ou Spark.

hadoop-data-engineer

Des compétences de base

Technologies et services Cloud

La demande pour ces technologies ne cesse de croître. Ainsi, se lancer dans des projets de migration vers le Cloud est devenu un impératif pour les entreprises. Un bon data engineer doit connaître et avoir de l’expérience dans l’utilisation des services Cloud, leurs avantages, leurs inconvénients et leur application dans les projets Big Data. Il doit au moins être à l’aise avec une plate-forme comme Microsoft Azure ou AWS. De plus, il doit connaître les bonnes pratiques en matière de sécurité et de virtualisation des données. Il ne faut pas oublier que ces technologies sont là pour durer. Par conséquent, suivre une formation qui les inclut dans le programme est toujours une bonne idée.

Bases de données

Les data engineers doivent connaître le fonctionnement et l’utilisation des bases de données, les différences entre les bases de données relationnelles et NoSQL. Le langage de base pour interagir avec ces bases de données est SQL. En ce sens, un futur data engineer doit se familiariser avec les requêtes d’écriture et de lecture ainsi que la manipulation de données. En outre, il doit comprendre la différence entre les types de bases de données NoSQL et les cas d’utilisation pour chacun d’eux.

Pipelines de données

L’un des principaux rôles des ingénieurs de données est de créer des pipelines de données. Pour ce faire, il utilise des technologies ETL (Extraction-Transform-Load) et des cadres d’orchestration. Le data engineer est formé pour connaître ou se sentir à l’aise avec certaines des plus connues telles que Apache NiFi ou Airflow.

processus-etl-data-enginering

Des compétences avancées

Il existe d’autres compétences et connaissances acquises lors d’une formation data engineer en plus des compétences de base. Elles ajoutent une grande valeur aux compétences professionnelles.

  • Systèmes de mise en file d’attente de messagerie comme Kafka ou RabbitMQ : les data engineers doivent comprendre les avantages du déploiement de ces technologies et leur architecture.
  • Langage de programmation orienté objet comme Python : ces langages sont très utiles dans le secteur du Big Data. La plupart des frameworks et outils open source sont développés avec des langages JVM. Ils seront particulièrement utiles pour développer des intégrations de technologies, résoudre les erreurs et comprendre les journaux.
  • Traitement de flux avec des outils de traitement de streaming comme Flink, Kafka Streams ou Spark Streaming : une formation data engineer doit inclure l’apprentissage de ces outils. Les entreprises doivent aujourd’hui mettre en place des projets avec des exigences en temps, avec de faibles latences de traitement. En ce sens, la formation à ces technologies est très intéressante avec de nombreux cas d’utilisation à exploiter.
Formations

TOP 10 des Meilleurs Masters en Data Science

Vous envisagez d’obtenir un master en data sciences ? Le blog de DataScientest t’a élaboré une petite liste des 10 meilleurs diplômes, notés par les Chief data Officiers et managers de 30 entreprises du CAC 40. C’est parti :

Si tu veux devenir Data Scientist :

  1. ENSAE Paris Tech, MS Data Science (4,75/5)

Tarif : entre 9 500€ et 14 000€

Durée : 420 heures de cours + stage de 4 à 6 mois

Description : C’est un master d’excellence qui apporte tout le bagage nécessaire pour devenir data scientist, data analyst ou encore chief data officer. Les cours sont conçus de telle manière à ce que les étudiants puissent mettre en pratique ce qui leur a été enseigné. Master alliant les connaissances à la fois techniques et théoriques, il te permettra de mener une carrière d’expert ou te hissera à la plus haute place des postes décisionnels de la data.

  1. Polytechnique, Master Data Science (4,73/5)

Durée : 1 an

Description : Ce master est proposé en partenariat avec l’Université Paris-Saclay, l’ENS et Télécom Paristech. Il propose un parcours pédagogique d’excellence alliant théorie et pratique. Il offre également aux étudiants qui le souhaitent, la possibilité d’obtenir un doctorat et de continuer dans la recherche.

  1. ENS Mathématiques vision Apprentissage (4,70/5)

Durée : 6 mois de cours + 4 mois de stage minimum

Description : Ce master est en association avec les écoles et universités les plus prestigieuses : Centrale Supélec, Polytechnique, Télécom Paristech et Jussieu. Il dote les étudiants de connaissances techniques solides qui leur permettront d’obtenir les meilleurs postes aussi bien en startups que dans les plus grandes entreprises du CAC 40, et ce, quelque soit le secteur d’activité.

  1. Université Paris Dauphine-MASH- Mathématiques, Apprentissage et Sciences Humaines (4,61/5)

Durée : 6 mois de cours + 4 mois de stage

Description : Ce master est reconnu par le CEREMADE (Centre de Recherche en Mathématiques de la Décision). Il offre un bagage en statistiques appliquées à l’économie numérique et aux sciences humaines.

Si tu veux devenir Data Analyst :

  1. Formation X-HEC data science for business (4,66/5)

Tarif : 41 300€

Durée : 2 ans

Description : C’est un master de prestige qui allie la renommée de la plus grande école de commerce de France à celle de la plus grande école d’ingénierie française. Le programme est conçu de telle sorte à ce que les étudiants puissent mettre en application toutes les connaissances techniques apprises lors de la première année à Polytechnique et ainsi répondre à des problématiques commerciales dans le cadre des cours à HEC.

  1. ESSEC-Centrale Supélec master of science, data science & business analytics (4,57/5)

Tarif : 23 000€

Durée : entre 1 et 2 ans

Description : À l’instar du master précédent, il allie le prestige de deux des plus grandes écoles de commerce et d’ingénierie de France. La particularité de ce master est le grand choix proposé aux étudiants quant à l’élection de leurs cours avancés. Ce diplôme est classé 3ème mondial et 1er européen par le classement mondial des universités QS.

  1. Telecom Paristech, master spécialisé big data (4,14/5)

Tarif : 18 500€

Durée : 9 mois de cours + 3 mois de stage

Description : La renommée internationale de ce master permet aux étudiants de décrocher les meilleurs postes dans les plus grandes entreprises. Ce master de qualité promeut l’innovation avec son incubateur Télécom Paris Novation Center Entrepreneurs et tous ses chercheurs.

Si tu veux devenir Data Engineer

  1. Telecom Paristech, master spécialisé big data (4,56/5)

Tarif : 18 500€

Durée : 9 mois de cours + 3 mois de stage

Description : voir description plus haut (si tu veux devenir data analyst 3)

  1. Université Paris Saclay- Finalité M2 Statistiques et Machine Learning (4,2/5)

Durée : 1 an de cours + 4 mois de stage

Description : Attention ! Cette formation est ultra sélective puisqu’elle n’offre que 20 places. C’est un master orienté plutôt Machine Learning qui aide les étudiants à préparer leur thèse en leur apprenant tous les outils nécessaires à l’analyse et à la prise de décision.

  1. Université Paris-Dauphine- Master Intelligence Artificielle, Systèmes, Données (IASD) (4,14/5)

Durée : 1 an de cours + 6 mois de stage

Description : C’est un master à haut niveau d’exigence qui apporte aux étudiants les connaissances théoriques les plus pointilleuses afin de devenir les prochains créateurs des meilleurs systèmes d’IA. Les cours sont dispensés par des grands chercheurs et des professionnels reconnus. Les étudiants auront également le choix entre un large panel d’options qui leur permettra de se spécialiser.