Search results for

python

Code Python montrant la déclaration et l'utilisation de tableaux, illustrant des exemples d'array en Python.
Dossier

Array Python : Guide Pratique pour Débutants

Les arrays en Python sont une composante essentielle pour gérer des structures de données efficaces et performantes. Contrairement aux listes classiques, ils offrent une solution optimisée pour stocker et manipuler des collections homogènes, grâce au module array ou à l’incontournable bibliothèque NumPy. Que vous soyez novice ou développeur chevronné, comprendre les arrays en Python vous permettra de mieux appréhender des concepts clés tels que le traitement de grandes quantités de données, les calculs numériques rapides et la manipulation avancée de tableaux multidimensionnels. Dans cet article, nous vous accompagnons étape par étape pour tout savoir sur les arrays : leur création, leurs différences avec les listes et leurs multiples cas d’utilisation en programmation.

Qu’est-ce qu’un array en Python

En Python, un array, ou tableau, est une structure de données fondamentale permettant de stocker des séquences ordonnées d’éléments de même type. Contrairement aux listes classiques, les arrays nécessitent l’importation explicite du module array ou l’utilisation de la bibliothèque NumPy pour leur création et manipulation. Ils se distinguent par leur capacité à gérer efficacement la mémoire, ce qui les rend idéaux pour le traitement de grandes quantités de données, notamment grâce à leur stockage contigu.

Les arrays Python imposent une homogénéité des types de données, comme des entiers ou des nombres à virgule flottante, ce qui favorise des calculs rapides et une gestion optimale des ressources système. Cette caractéristique les rend particulièrement utiles pour travailler avec des tableaux multidimensionnels, comme les arrays 2D, qui sont essentiels pour des projets d’analyse de données ou de machine learning.

Différence entre listes et arrays

Avant d’approfondir la création des arrays, il est important de différencier arrays et listes en Python. Bien que polyvalentes, les listes ne sont pas toujours adaptées à des tâches exigeantes impliquant des calculs intensifs ou des volumes de données très élevés. Voici une comparaison synthétique entre ces deux structures :

Caractéristique Listes Arrays
Type de données Éléments hétérogènes autorisés Éléments homogènes uniquement
Opérations arithmétiques Non supportées directement Supportées nativement (avec NumPy)
Flexibilité Très flexible Plus rigide, avec opérations optimisées
Mémoire Consommation plus importante Plus économe et efficace
Accès aux éléments Accès direct Similaire (nécessite parfois une boucle)
Performance Moins performante pour les calculs Optimisée pour les traitements numériques
Utilisation Données variées Données homogènes et calculs

Si vos besoins impliquent des calculs rapides ou la manipulation avancée de données, les arrays Python, notamment via NumPy, s’avèrent bien plus adaptés qu’une liste classique.

Création d’arrays avec des listes

Créer un array à partir de listes Python constitue la méthode la plus simple pour débuter avec ces structures. Vous aurez besoin d’importer le module array (offert par Python natif) ou d’utiliser la bibliothèque NumPy, plus complète. Voici comment procéder :

  1. Importer le module : Sélectionnez array (modèle natif) ou NumPy en fonction de vos besoins. Pour des tâches avancées, NumPy est la meilleure option.
  2. Transformer des listes en arrays : Spécifiez un type de données à l’aide d’un typecode ('i' pour les entiers, 'f' pour les flottants, etc.) ou utilisez simplement numpy.array().
  3. Utiliser des fonctionnalités avancées : Avec NumPy, effectuez des transformations d’array sans boucles explicites, optimisant ainsi les performances.

Voici un exemple d’implémentation avec NumPy :

import numpy as np
data = [1, 2, 3, 4, 5]
array_numpy = np.array(data)  # Conversion de la liste en array
print(array_numpy)

Pour revenir à une liste, utilisez .tolist(). Cette méthode facilite la transition entre types natifs et optimisés si nécessaire.

Un homme souriant travaillant sur un ordinateur portable, illustrant l'utilisation d'array en Python avec NumPy.

Création d’arrays avec le module array

Si vous préférez utiliser le module natif array, voici les étapes spécifiques :

  1. Importez le module : from array import array.
  2. Définissez le type de données : Par exemple, 'i' pour les entiers. Ce choix garantit une structure homogène.
  3. Initialisez l’array : Utilisez la syntaxe array('typecode', [éléments]). Exemple :
from array import array
arr = array('i', [1, 2, 3, 4])

Le module array est particulièrement utile pour des besoins spécifiques en gestion mémoire, tandis que NumPy est davantage conçu pour des cas complexes impliquant des tableaux 2D ou des calculs avancés.

Comment créer un array Python ?

Une fois les bases des arrays comprises, vous pouvez les créer via différentes approches. La fonction np.array() est l’une des méthodes les plus intuitives disponibles grâce à NumPy. Par exemple :

import numpy as np
arr = np.array([1, 2, 3, 4, 5])  # Crée un array unidimensionnel

Pour des arrays multidimensionnels, utilisez des listes imbriquées :

arr = np.array([[1, 2, 3], [4, 5, 6]])  # Tableau 2D

Alternativement, utilisez le module natif array en suivant les mêmes étapes décrites plus haut. Ces deux méthodes sont complémentaires et s’adaptent à vos besoins spécifiques en performance ou en simplicité.

En résumé, la création d’arrays est accessible à tout développeur grâce à ces outils robustes. Qu’il s’agisse de traiter des données simples ou de structurer des projets complexes, ces approches vous offrent une polyvalence inestimable.

Manipulation des éléments d’un array Python

L’accès et la modification des éléments dans un array Python reposent sur une indexation intuitive. Par exemple, utilisez :

  • arr[0] pour accéder au premier élément.
  • arr[-1] pour accéder au dernier élément.

Modifiez un élément avec une simple affectation, comme :

arr[1] = 10  # Change le deuxième élément en 10

Python facilite aussi le redimensionnement dynamique des arrays :

  • Ajoutez un élément avec .append().
  • Insérez une valeur grâce à .insert(index, valeur).

Enfin, supprimez des éléments avec des méthodes comme remove() ou pop().

Si vous travaillez avec des structures complexes (ex : arrays multidimensionnels), les bibliothèques comme NumPy apportent une puissance supplémentaire avec des fonctions optimisées telles que np.where() ou np.delete().

Méthodes pour supprimer un élément d’un array

Pour supprimer des éléments, plusieurs choix s’offrent à vous en fonction de vos besoins :

  • remove() : Élimine la première occurrence d’une valeur donnée.
  • pop() : Supprime et retourne un élément à un index précis.

Avec NumPy, vous pouvez utiliser des fonctions similaires adaptées aux besoins des tableaux multidimensionnels, telles que np.delete().

Méthodes essentielles des arrays Python

Méthode reverse()

Inversez l’ordre des éléments d’un array avec reverse() pour une manipulation rapide sans créer de nouvelles structures. Par exemple :

array.reverse()

Méthode sort()

Triez les éléments avec sort() ou, pour des arrays NumPy, utilisez np.sort() pour encore plus de flexibilité :

array.sort()

Méthodes count() et copie

Utilisez count() pour compter les occurrences d’un élément spécifique. Pour copier un array efficacement, privilégiez des outils comme numpy.copy() ou copy.deepcopy().

Utilisation des arrays Python en pratique

Boucles for et itérations

Les boucles for permettent une traversée simple des arrays pour des traitements élémentaires. Avec NumPy, vous pouvez explorer des fonctionnalités comme np.nditer() pour gérer des tableaux complexes.

Applications concrètes

Les arrays Python interviennent dans de nombreux domaines, notamment :

  • Analyse de données (tri, filtrage).
  • Calcul scientifique (simulations, algèbre linéaire).
  • Traitement d’images et manipulation de pixels.
  • Machine learning, avec des arrays multidimensionnels.

Les arrays en Python constituent un outil puissant et adaptable. Grâce à leur performance et leur flexibilité via des bibliothèques comme NumPy, ils ouvrent un large éventail de possibilités pour des applications variées. Plongez dans ces concepts et explorez leur potentiel pour améliorer vos projets Python et développer des algorithmes optimisés et performants.

Extrait de code Python dans l'IDE Spyder, illustrant une fonction d'exécution et des opérations sur des objets sélectionnés.
Conseils

Spyder Python : Guide complet pour débuter facilement avec cet IDE

Pour les passionnés de Python, qu’ils soient débutants ou expérimentés, Spyder Python constitue un allié de choix pour le développement et l’analyse de données. Conçu spécialement pour répondre aux besoins des scientifiques et des développeurs, cet environnement de développement intégré (IDE) open source allie convivialité et puissance. Dans cet article, nous explorons les principaux avantages et outils offerts par Spyder, et pourquoi il s’impose comme un atout indispensable pour coder en Python et optimiser vos projets.

Comment utiliser Spyder Python pour débuter ?

Si vous cherchez un environnement performant pour vos projets en Python, Spyder se distingue comme une solution incontournable. Conçu pour répondre aux exigences de calcul scientifique et d’analyse de données, ce logiciel open source associe simplicité et fonctionnalités avancées. Il inclut des outils essentiels comme un éditeur de code sophistiqué, un débogueur interactif et un explorateur de variables. Disponible sur toutes les grandes plateformes, Spyder peut être facilement téléchargé via le gestionnaire de paquets Anaconda, qui offre un environnement préconfiguré prêt à l’emploi.

L’interface intuitive de Spyder permet aux débutants de s’adapter rapidement tout en proposant des fonctionnalités avancées pour les professionnels. Ceux-ci apprécieront, par exemple, son intégration transparente avec Jupyter Notebook, une solution prisée pour créer des documents interactifs et analyser des données de manière dynamique. Que vous soyez intéressé par des applications comme le scraping web, la création de scripts Python ou la mesure des performances, Spyder vous garantit un cadre de travail efficace grâce à son support des bibliothèques scientifiques fondamentales telles que NumPy, Pandas et Matplotlib.

Les principales fonctionnalités de Spyder comprennent :

  • Éditeur multilingue doté de la coloration syntaxique et de l’autocomplétion intelligente pour accélérer la productivité.
  • Débogueur intégré, qui facilite la détection et la correction des erreurs, aussi bien pour les novices en programmation que pour les experts.
  • Explorateur de variables permettant une visualisation et une manipulation en temps réel des données pour des analyses approfondies.
  • Compatibilité avec les notebooks Jupyter, parfaits pour des documents interactifs.
  • Console IPython interactive, qui améliore les flux de travail grâce à un historique des commandes.
  • Profiler intégré, idéal pour optimiser le code, notamment dans des tâches intensives comme le développement de frameworks ou d’outils dédiés au scraping.
  • Intégration avec Anaconda, garantissant une installation simplifiée et un environnement Python complet.

L’installation de Spyder est simple. Vous pouvez soit utiliser Anaconda, recommandé pour bénéficier d’un environnement prêt à l’emploi, soit télécharger Spyder depuis son site officiel. Les utilisateurs de Windows doivent choisir la version adaptée, comme Spyder Python pour Windows 64-bit. Quelle que soit l’option choisie, cette installation est une excellente porte d’entrée vers le développement avec Python et vous assure une expérience enrichissante.

Pour ceux qui préfèrent une approche sans installation, Spyder Python online offre une solution cloud pratique, permettant de coder directement via un navigateur. Cette flexibilité renforce encore davantage l’attrait de Spyder, qui s’impose comme une référence pour exploiter pleinement vos compétences en programmation Python.

Développeur utilisant l'IDE Spyder pour coder en Python sur un ordinateur portable

Interface et outils de Spyder Python

L’éditeur de code avancé de Spyder Python, élément central de cet IDE populaire, procure une expérience de codage optimisée pour les développeurs. Il intègre des fonctionnalités essentielles comme la coloration syntaxique, l’auto-complétion intelligente, et l’analyse de code en temps réel. Ces caractéristiques facilitent le développement, que vous utilisiez Spyder localement ou en ligne. De plus, l’éditeur prend en charge plusieurs onglets, permettant de travailler sur plusieurs fichiers simultanément. Grâce à son système intégré de gestion des erreurs et à ses outils d’optimisation, il identifie les problèmes potentiels avant même l’exécution, rendant le processus de codage plus efficace.

La console interactive de Spyder Python, un des atouts phares de cet IDE, propose deux modes principaux pour s’adapter à différents besoins :

Mode IPython Mode Python
Affichage enrichi des résultats pour une analyse de données approfondie Interface simplifiée pour une exécution rapide
Historique des commandes pour un suivi de vos étapes Déroulement intuitif des scripts
Complétion de code dynamique pour augmenter la productivité Débogage direct et facile à prendre en main
Support des graphiques inline, idéal pour des visualisations ou le scraping web Hautes performances pour de longs scripts
Accès aux variables dans l’espace de travail pour une gestion pratique Compatibilité accrue avec divers frameworks

Pour une organisation optimale des projets, le navigateur de fichiers intégré simplifie la gestion des fichiers et dossiers. Il propose une structure arborescente claire ainsi qu’une recherche instantanée pour accéder rapidement aux segments de code ou documents spécifiques. Cet outil s’avère particulièrement utile pour les projets complexes impliquant des frameworks Python comme Pygame ou des applications de scraping.

Peu importe que vous utilisiez Spyder Python online, que vous l’installiez via Anaconda, ou que vous téléchargiez une version comme Spyder Python pour Windows 64-bit, ce logiciel s’impose comme un incontournable. Sa flexibilité en fait un choix de premier plan pour les adeptes de solutions comme Jupyter Notebook, PyCharm, ou Visual Studio Code.

Applications pratiques

Grâce à son intégration native des bibliothèques scientifiques, Spyder enrichit considérablement l’expérience des développeurs dans des domaines comme l’analyse de données ou les calculs scientifiques. Des outils essentiels tels que NumPy (calculs numériques), Pandas (manipulation des données) et Matplotlib (visualisation graphique) s’intègrent harmonieusement à l’environnement de Spyder, rendant son utilisation fluide et intuitive pour les novices comme pour les experts. Les utilisateurs ayant opté pour Spyder via Anaconda bénéficient d’une installation simplifiée, donnant directement accès à ces bibliothèques.

Les fonctionnalités clés pour la science des données avec Spyder incluent :

  • Débogage avancé avec des points d’arrêt et une inspection en profondeur des variables.
  • Compatibilité avec les notebooks Jupyter, une solution alternative aux IDE comme PyCharm ou Visual Studio Code.
  • Visualisation en temps réel des données avec Matplotlib pour un diagnostic rapide.
  • Profilage de code détaillé pour maximiser les performances des frameworks Python.
  • Auto-complétion intelligente adaptée aux bibliothèques scientifiques.
  • Explorateur de variables permettant de manipuler intuitivement les DataFrames.

Spyder est un outil apprécié dans divers secteurs. Dans la recherche scientifique, il est employé pour modéliser des systèmes complexes. Les analystes financiers, quant à eux, l’utilisent pour décrypter des tendances et réaliser des prévisions. Les experts en intelligence artificielle exploitent Spyder lors de la construction de modèles de machine learning, souvent en complément avec Jupyter Notebook. Téléchargeable facilement, il est disponible pour Windows 64-bit, mais aussi pour d’autres systèmes, garantissant un accès universel.

Cette grande polyvalence, alliée à ses outils robustes, fait de Spyder une solution idéale pour l’analyse de données et la recherche scientifique. Que vous écriviez des scripts pour le scraping ou exploriez de nouveaux usages avec des bibliothèques spécialisées comme Pygame, Spyder vous permet de relever vos défis Python avec efficacité.

Avec Spyder Python, se lancer dans le développement devient une expérience enrichissante et fluide, quel que soit votre niveau d’expertise. Grâce à ses nombreuses fonctionnalités intuitives et sa compatibilité étroite avec les bibliothèques et outils scientifiques, cet IDE se positionne comme un compagnon indispensable pour vos projets Python. Que ce soit pour l’analyse de données, le calcul scientifique ou la création de scripts, Spyder combine simplicité, performance et flexibilité pour exploiter pleinement le potentiel de la programmation Python.

BeautifulSoup
Définitions

Beautiful Soup : tout savoir sur la bibliothèque Python de Data Scraping

Le web est une véritable mine de données informatiques. Ces données peuvent être exploitées, analysées pour une infinité de cas d’usage et d’applications. On peut les utiliser pour nourrir des systèmes de Machine Learning, d’intelligence artificielle, ou tout simplement pour mettre en lumière des tendances et des phénomènes.

S’il est possible de collecter ces données manuellement afin de constituer de vastes datasets, cette tâche représente un travail de titan. Afin de l’automatiser, on utilise le Web Scraping.

Qu’est-ce que le Web Scraping ?

Le Web Scraping est un processus qui consiste à assembler des informations en provenance d’internet, à l’aide de divers outils et frameworks. Cette définition est très large, et même le fait de copier / coller les paroles d’une chanson peut être considéré comme une forme de Web Scraping.

Toutefois, le terme de Web Scraping désigne généralement un processus impliquant l’automatisation. Les volumes massifs de données sont collectés automatiquement, afin de constituer de vastes datasets.

Certains sites web s’opposent à la collecte de leurs données par des scrapers automatiques. En règle générale, le scraping à des fins éducatives est plus toléré que pour un usage commercial. Il est important de consulter les conditions d’utilisation d’un site avant d’initier un projet.

À quoi sert le Web Scraping ?

Le Web Scraping permet d’agréger des informations plus rapidement qu’avec une collecte manuelle. Il n’est plus nécessaire de passer de longues heures à cliquer, à dérouler l’écran ou à rechercher les données.

Cette méthode se révèle particulièrement utile pour amasser de très larges volumes de données en provenance de sites web régulièrement mis à jour avec du nouveau contenu. Le scraping manuel est une tâche chronophage et rébarbative.

À l’échelle individuelle, le Web Scraping peut se révéler utile pour automatiser certaines tâches. Par exemple, un demandeur d’emploi peut utiliser Python pour automatiser ses recherches d’offres. Quelques lignes de code permettent d’enregistrer automatiquement les nouvelles annonces publiées sur des plateformes comme Indeed ou Monster, afin de ne plus avoir à visiter ces sites web quotidiennement.

web-scraping-beautiful-soup

Le Web Scraping peut aussi être utilisé pour surveiller des changements de prix, comparer des prix, ou surveiller la concurrence en collectant des sites web en provenance de leurs sites web. Les possibilités sont nombreuses et diverses.

Toutefois, cette méthode se révèle surtout pertinente pour les projets Big Data nécessitant d’immenses volumes de données. Par exemple, l’entreprise ClearView AI a utilisé le Web Scraping sur les réseaux sociaux afin de constituer une immense base de données de photos de profils pour son logiciel de reconnaissance faciale.

Le Web Scraping est presque aussi vieux qu’internet. Alors que le World Wide Web fut lancé en 1989, le World Wide Web Wanderer a été créé quatre ans plus tard. Il s’agit du premier robot web créé par Matthew Gray du MIT. Son objectif était de mesurer la taille du WWW.

Les défis du Web Scraping

Depuis sa création, internet a beaucoup évolué. On y trouve une large variété de types et formats de données, et le web scraping comporte donc plusieurs difficultés.

Le premier défi à relever est celui de la variété. Chaque site web est différent et unique, et nécessite donc un traitement spécifique pour l’extraction d’informations pertinentes.

En outre, les sites web évoluent constamment. Un script de Web Scraping peut donc fonctionner parfaitement la première fois, mais se heurter ensuite à des dysfonctionnements en cas de mise à jour.

Dès que la structure d’un site change, le scraper peut ne plus être capable de naviguer la ” sitemap ” correctement ou de trouver des informations pertinentes. Heureusement, la plupart des changements apportés aux sites web sont minimes et incrémentaux, et un scraper peut donc être mis à jour avec de simples ajustements.

Néanmoins, face à la nature dynamique d’internet, les scrapers nécessitent généralement une maintenance constante. Il est possible d’utiliser l’intégration continue pour lancer périodiquement des tests de scraping et s’assurer que les scripts fonctionnent correctement.

Les APIs en guise d’alternative au Web Scraping

Certains sites web proposent des APIs (interface de programmation d’application) permettant d’accéder à leurs données de manière prédéfinie. Ces interfaces permettent d’accéder aux données directement en utilisant des formats comme JSON et XML, plutôt que de s’en remettre au parsing de HTML.

L’utilisation d’une API est en général un processus plus stable que l’agrégation de données via le Web Scraping. Pour cause, les développeurs créent des APIs conçues pour être consommées par des programmes plutôt que par des yeux humains.

API-beautiful-soup

La présentation front-end d’une site web peut souvent changer, mais un tel changement dans le design d’un site web n’affecte pas la structure de son API. Cette structure est généralement plutôt permanente, ce qui en fait une source plus fiable de données.

Néanmoins, les APIs aussi peuvent changer. Les défis liés à la variété et à la durabilité s’appliquent donc aussi bien aux APIs qu’aux sites web. Il est également plus difficile d’inspecter la structure d’une API par soi-même si la documentation fournie n’est pas suffisamment complète.

Qu’est-ce que Beautiful Soup ?

Beautiful Soup est une bibliothèque Python utilisée pour le Web Scraping. Elle permet d’extraire des données en provenance de fichiers XML ou HTML. Cette bibliothèque crée un arbre de parsing à partir du code source de la page, pouvant être utilisé pour extraire les données de manière hiérarchique et lisible.

À l’origine, Beautiful Soup fut introduite en mai 2006 par Leonard Richardson qui continue à contribuer au projet. En outre, le projet est soutenu par Tidelift et son outil de maintenance open-source proposé par abonnement payant.

En plus de ses hautes performances, Beautiful Soup apporte plusieurs avantages. Cet outil permet de parcourir les pages de la même manière qu’un navigateur, et enjolive le code source.

Comment apprendre à utiliser Beautiful Soup et Python ?

Afin d’apprendre à utiliser Beautiful Soup, vous pouvez choisir DataScientest. Leur formation Data Analyst commence avec un module dédié à la programmation en Python, et comporte un module dédié à l’extraction de données textes et au Web Scraping.

Les autres modules de ce cursus couvrent la Dataviz, le Machine Learning, les bases de données Big Data et la Business Intelligence. À l’issue du programme, vous aurez toutes les compétences requises pour exercer le métier de Data Analyst.

Toutes nos formations adoptent une approche Blended Learning combinant coaching individuel sur notre plateforme en ligne et Masterclass. Le programme peut être complété en Formation Continue ou en mode BootCamp intensif.

À la fin du cursus, vous recevrez un certificat délivré par l’Université Paris la Sorbonne dans le cadre de notre partenariat. Parmi les alumnis, 80% ont trouvé un emploi immédiatement après la formation.

Nos programmes sont éligibles au Compte Personnel de Formation pour le financement. N’attendez plus et découvrez la formation Data Analyst de DataScientest !

Vous savez tout sur Beautiful Soup. Découvrez notre dossier complet sur le langage Python, et notre dossier sur le métier de Data Analyst.

pandas-bibliothèque-python
Définitions

Pandas : une bibliothèque Python pour manipuler facilement des données

La bibliothèque Pandas est certainement la plus utile pour les data scientist sous le langage Python. Elle permet d’explorer, transformer, visualiser et comprendre vos données afin d’en retirer le maximum d’informations. Voyons ensemble dans quelles cas l’utiliser et ses fonctions les plus courantes.

Si vous évoluez dans la data science, vous avez sûrement entendu parler de la bibliothèque Pandas. Son nom n’a rien à voir avec ce petit animal d’Asie qui ressemble à un ours. Le nom «Pandas» est une contraction des mots «Panel Data» et «Python Data Analysis». Pandas est donc une bibliothèque open-source proposant différentes fonctions qui permettent la manipulation et l’analyse de données en Python de manière simple et intuitive. C’est donc une bibliothèque polyvalente qui vous permettra de réaliser facilement des analyses de données complexes. La bibliothèque Pandas permet également de créer facilement des graphes, très utiles dans la Data Analyse.

Première force de Pandas, elle se base sur la bibliothèque Numpy

Grand avantage de Pandas, elle se base sur la très populaire bibliothèque Numpy. Cette bibliothèque fournit une pléiade de structures de données et d’opérations qui permettent de traiter des données numériques et des données chronologiques. La bibliothèque Pandas est également importante car ses données sont souvent utilisées comme base pour les fonctions de plotting de Matplotlib, une autre bibliothèque renommée utilisant le langage Python. Les données issues de Pandas sont aussi très utiles dans l’analyse statistique en SciPy, les algorithmes de Machine Learning en Scikit-learn. La bibliothèque Pandas est également très utilisée dans le traitement et l’analyse des données tabulaires (vous pourrez stocker vos données sous le format .csv, .tsv et .xlsx) en entrant des requêtes de type SQL.

Les Séries, les Dataframes et le Panel : les principales structures de données de Python Panda

Si vous utilisez Pandas, vous travaillerez principalement avec deux structures de données, les Séries et les Dataframes.

Les Séries : Une Série est un tableau unidimensionnel étiqueté qui peut contenir des données de n’importe quel type (entier, chaîne, flottant, objets python, etc.). En d’autres mots, les séries sont équivalentes aux colonnes dans un tableau Excel. Les étiquettes des axes sont collectivement appelées index.

Pandas en général est utilisé pour les données de séries chronologiques financières ou des données économiques. Ce langage dispose de nombreux assistants intégrés pour gérer les données financières. Grâce à Numpy, vous pourrez facilement gérer de grands tableaux multidimensionnels pour le calcul scientifique.

tableau-multidimensionnel

La Dataframe : c’est une structure de données bidimensionnelle, c’est-à-dire que les données sont alignées de façon tabulaire en lignes et en colonnes. On peut la comparer en quelque sorte à un classeur Excel. La Dataframe Pandas est particulièrement puissante car elle permet de :
  • charger des données provenant de différentes sources.
  • réaliser facilement des statistiques et calculer la moyenne, la médiane, le maximum et le minimum de chaque colonne et les corrélations entre chacune d’entre elles.
  • nettoyer facilement les données en supprimant les valeurs manquantes ou en filtrant les lignes ou les colonnes selon certains critères.
  • visualiser les données avec l’aide de Matplotlib. Tracez des barres, des lignes, des histogrammes, des bulles, etc.
  • elle permet de stocker les données nettoyées et transformées dans un CSV, TSV ou XLSX.

La Dataframe vous permet également de créer vos propres fonctions Python pour effectuer certaines tâches de calcul et les appliquer aux données de vos Dataframes.

En utilisant les Séries et les Dataframes on peut donc facilement manipuler des données et les représenter.

Enfin, le Panel est un conteneur important pour les données en 3 dimensions. Les noms des 3 axes sont destinés à décrire les opérations impliquant des données de panel et, en particulier, l’analyse économétrique de ces données. L’analyse économétrique est une analyse quantitative, permettant de vérifier l’existence de certaines relations entre des phénomènes économiques et de mesurer concrètement ces relations sur la base d’observations de faits réels. On peut par exemple observer les notes des élèves d’une classe et les comparer sur les devoirs rendus durant les trois trimestres d’une année scolaire.

Pandas, un langage essentiel en Data Science et en Machine Learning

Pandas est un outil particulièrement populaire en science des données il est particulièrement reconnu pour le traitement et l’analyse des données. En effet, Pandas est très utile dans le nettoyage, la transformation, la manipulation et l’analyse de données. En d’autres mots, Pandas aide les Data Scientists à mettre de l’ordre dans leurs données ce qui représente selon certains près de 80% de leur travail.

En ce qui concerne le Machine Learning, Pandas est tout aussi reconnu comme un outil de choix. Ces fonctions permettent notamment d’explorer, de transformer mais aussi de créer une visualisation de la donnée.

En effet, Pandas est souvent accompagné de la bibliothèque Scikit-learn, c’est le package de machine learning de Python. L’utilisation de Scikit-learn intervient dans un deuxième temps après le passage de Pandas dans la première phase d’exploration de la donnée dans un projet de Data Science.

Se former à Pandas avec DataScientest

logo-flask
Comment apprendre?

Tutoriel API Flask : Comment programmer une API avec Python ?

Bonjour à tous et bienvenue dans ce Tutoriel sur Flask. Dans la suite de cet article, vous allez apprendre à mettre en place une API sous Python à l’aide de cet outil de plus en plus utilisé.

Qu’est-ce qu’une API ? Quand est-ce utile ?

Nous allons commencer ce tutoriel sur Flask en parlant des APIs. Les API (application programming interface / interface de programmation d’application) sont des interfaces. Elles vous permettent de déclencher des fonctionnalités d’un projet. Vous pouvez vous imaginer un panneau de commandes. Et Flask est un outil qui permet de construire des API avec python.

Si vous disposez de code qui vous sert à réaliser des tâches, peu importe lesquelles, vous pourriez vouloir le rendre disponible, permettre à des utilisateurs d’envoyer des requêtes à votre service. Et c’est dans ce contexte que mettre en place une API vous intéressera.

Exemple :

Pour donner l’exemple d’une situation dans laquelle vous auriez besoin d’une API : imaginez que vous veniez de développer une fonctionnalité permettant, à partir d’une image, d’obtenir une valeur numérique.

On a la fonction « fonction1 » qui prend en paramètre un objet de type bytes (une image) qui sera traité et qui fournira en sortie une variable de type string.

Dire que vous aimeriez mettre en place une interface pour qu’un utilisateur distant puisse lui envoyer une requête, que cet utilisateur puisse dire à votre programme « s’il te plait, exécute le code sur l’image que je te fournit et renvoie moi le résultat » c’est comme dire que vous aimeriez mettre en place une API.

Les types de requêtes

En travaillant sur la mise en place d’API, on a remarqué que les requêtes qu’on voulait implémenter se catégorisent très souvent parmi ces quatre :

  •     Créer un élément
  •     Modifier un élément
  •     Supprimer un élément
  •     Récupérer une liste d’éléments

Nous allons donc voir dans ce tutoriel sur flask comment implémenter des requêtes de type : get (récupérer), post (envoyer), put (modifier), delete (supprimer).

Il existe d’autres types de requêtes, vous n’en aurez surement pas besoin mais vous pourrez les trouver ici.

Adresse et routes

Vous allez run votre service sur une machine, que ce soit la vôtre ou celle que vous louez dans un datacenter.

Elle aura une adresse IP. Notez que l’adresse 127.0.0.1 signifie « moi-même ». Si vous envoyez une requête à cette adresse, c’est vers votre PC que vous vous dirigez.

Votre ordinateur ou le serveur sur lequel vous voulez faire fonctionner le service sont des machines et elles ont des « ports » sur lesquels les services peuvent communiquer.

Votre API, ce sera un programme qui sera en écoute sur un port de la machine sur laquelle il est installé.

Si vous lancez votre API sur le port 1234 de votre machine, vous pourrez lui envoyer des requêtes en précisant l’url 127.0.0.1:1234

Une dernière chose : mettons que j’ai deux fonctionnalités : fonction1 et fonction2 qui sont toutes deux des requêtes de type get. Comment mon utilisateur pourra m’indiquer celle qu’il veut utiliser en ne fournissant que l’adresse 127.0.0.1:1234 ?

On pourrait imaginer que pour déclencher la fonction1, il puisse s’adresser à 127.0.0.1:1234/ici et que pour déclencher la fonction2, il puisse s’adresser à 127.0.0.1:1234/la. Eh bien c’est comme ça que cela fonctionne et on appelle /ici et /la des « routes ».

Notez que « / », est la route par défaut. Si vous envoyez une requête à 127.0.0.1:1234, on considèrera que vous vous adressez à 127.0.0.1:1234/

Prise en main de flask et implémentation de routes

La base

Le module Flask de python permet d’implémenter des API : pip install Flask.

module-flaskunnamed-13unnamed-14

Voici le snippet dont ces images sont extraites. Il est accessible via ce github repository.

Dans le répertoire où se situe le main.py, vous pouvez lancer la commande « python main.py ».

On aura alors un programme python en écoute sur le port 5000 (voir main.py ligne 14).

Il accepte des requêtes de type get à la route exemple_route (voir main.py ligne 11 et ligne 5 ainsi que routes/exemple_route.py ligne 4).

Les paramètres

Pour que les choses deviennent plus intéressantes, on accepte des paramètres. Voici le même snippet avec quelques lignes supplémentaires (exemple_route_/exemple_route.py : lignes 4; 5; 6; 10 et 11).

unnamed-15

Tester son API

Pour tester vos routes, je vous propose dans ce tutoriel sur flask, d’utiliser postman ou la bibliothèque requests de Python :

Une API CRUD (Create Read Update Delete)

Vous pouvez consulter ce github repository qui permet de faire les quatre types de requêtes (get, post, put, delete) et qui présente deux routes : exemple_route et exemple_route_all.

Les requêtes acceptées sont :

  • exemple_route get : prend « user » en paramètre et renvoie son mot de passe s’il existe
  • exemple_route post : prend « user » et « password » en paramètres et ajoute une valeur à notre liste d’utilisateurs
  • exemple_route put : prend « user » et « password » en paramètres et modifie le mot de passe de l’utilisateur user s’il existe
  • exemple_route delete : prend « user » en paramètre et supprimer l’utilisateur s’il existe
  • exemple_route_all get : ne prend pas de paramètre et renvoie la liste des utilisateurs et leur mot de passe

En inspectant le code, on se rend compte qu’il existe une variable « données » (exemple_route/exemple_route.py  ligne 14). Elle sera récupérée dans les méthodes implémentées à la suite grâce à la ligne de commande « global données « .

Pour vous permettre de créer une API, je vous suggère :

  • de disposer des bibliothèques : Flask, flask_cors, flask_restful
  • de partir d’un clone du repository Small_flask_api
  • d’y ajouter des fichiers dans le dossier routes pour contenir vos classes et la définition de leurs paramètres en vous inspirant du repository Exemple_API_1
  • d’ajouter les imports de classes dans le main.py et de déclarer leur associations

Je vous fournis un programme disponible sur ce repository. La fonction approximation_lagrange du fichier utils.py prend une liste de points en paramètres et renvoie une liste de coefficients d’un polynôme d’interpolation. La fonction écrire_polynome du fichier operations.py prend cette valeur dernièrement retournée pour rendre la syntaxe de l’écriture du polynôme interprétable par un éditeur LaTeX.

Je vous propose d’implémenter une API qui permette d’opérer sur une liste de points : récupérer, ajouter, supprimer. Elle permet également de récupérer l’expression d’un polynôme passant par les points de contrôle.

Vous trouverez une solution ici.

La documentation Flask

Pour continuer d’apprendre et acquérir des compétences après ce tutoriel sur flask, il vous faudra expérimenter au travers de projets, personnels et/ou professionnels. Vous aurez surement besoin de consulter la documentation flask et les forums d’entraide en cas de besoin, notamment Stack Overflow.

Envoyer un fichier ou une image

Envoyer une image en réponse est fréquemment demandé, ainsi je vous explique comment faire.

Importer send_file de la bibliothèque flask et l’appeler au retour d’une route en spécifiant le chemin pour situer le fichier. Vous pouvez consulter ce repository illustrant le renvoie d’images.

Se former sur Flask

Datascientest propose la formation au métier de data engineer qui permet non seulement d’apprendre à construire des API avec Flask, mais aussi d’utiliser FastApi et de, par la suite, conteneuriser les services API. La conteneurisation est un procédé utilisé pour isoler ses services, simplifier leur scalabilité et leur déploiement cross-platform.

Découvrir la formation Data Engineer

formation-python
Dossier

Formation Python : pourquoi et comment ?

Pourquoi apprendre Python ?  C’est l’une des premières questions que les étudiants se posent dans de nombreux centres académiques et formations Python. La réponse coule d’elle-même pour de nombreuses raisons. Python est un langage de programmation très populaire. Il a été une pièce maîtresse dans de grands projets et surtout dans l’introduction de pratiques innovantes lors de la programmation.

L’une des forces de ce langage de programmation est la large communauté de développeurs qui l’entoure. Tous ces professionnels cherchent à contribuer, partager et créer des logiciels évolutifs en communauté. En ce sens, il y a une sorte d’ambiance Python. Cela attire les programmeurs, les chercheurs et les professionnels de tous horizons qui cherchent à améliorer leurs performances de travail.

Python est un langage de programmation totalement gratuit et interprétatif qui est assez polyvalent. Il permet de mettre en place des projets variés allant du développement d’un site Web aux applications pour les systèmes d’exploitation.

La simplicité de la ligne de commande lors de la programmation est remarquable. C’est un fait connu de tous ceux qui l’utilisent. Et si vous n’êtes pas encore convaincu de suivre une formation Python, nous allons vous donner ici 5 raisons d’apprendre ce langage de programmation orienté objet.

Pourquoi suivre une formation Python ?

Python est un langage de programmation qui a beaucoup de qualité. C’est pour cette raison qu’il est actuellement très utilisé dans plusieurs domaines.

Open source

Si vous avez déjà programmé dans un autre langage, vous avez probablement remarqué qu’il s’agit de langages propriétaires avec quelques défauts dans la partie support. Et c’est encore pire pour les entreprises détenant des droits et faisant face par la suite à des problèmes juridiques.

Python est complètement open source. Il est accessible au public et tout le monde peut le modifier à sa guise en ajoutant ou en mettant de côté une partie du code toujours dans le but d’améliorer le travail de programmation.

accessibilité-python

En effet, Python a une licence connue sous le nom de PSFL ou Python Software Foundation License. Elle est compatible avec la licence publique générale GNU. De cette manière, il permet l’utilisation du code dans tout type de projet sans violations possibles du travail du programmeur et de ses actifs.

Multi-paradigme et multiplateforme

Initialement, Python a été conçu pour Unix. Mais, aujourd’hui, il peut fonctionner avec n’importe quel autre système. Il n’y a aucun risque qu’il y ait des problèmes d’implémentation tant que les utilisateurs recevront le Compiler approprié qui peut être configuré à partir du site officiel de Python.

Lorsqu’un langage est multi-paradigme, il permet non seulement de créer du développement Web, mais aussi de créer des applications ou des programmes sous d’autres critères de code structurel. Ainsi, Python est pratique pour développer des sous-paradigmes de programmation avancés contrairement à d’autres formes de programmation conventionnelles que l’on trouve notamment avec les langages plus anciens.

Python rassemble le meilleur de tous les langages en un seul. Il permet de développer des jeux, des applications, des sites Web et tout ce dont un programmeur est capable de faire, quelle que soit la complexité du projet.

C’est ainsi que les grandes entreprises utilisent Python au quotidien, notamment celles qui doivent interpréter des volumes massifs de données grâce à la data science et le Machine Learning.

Python est également présenté comme multiplateforme. En effet, il peut fonctionner sur n’importe quel système d’exploitation et a même été adapté à d’autres gadgets avec beaucoup de succès.

Polyvalence lors de la programmation

Avec Python, tout est possible. On peut créer n’importe quoi, du site Web à un programme ou une application pour effectuer une tâche telle que le calcul de valeurs statistiques ou la résolution de mathématiques complexes.

Syntaxe parfaite simple

La syntaxe Python est conviviale et cet élément met certainement en évidence la programmation. Pour les novices en programmation, il sera très facile d’effectuer le processus d’écriture du code.

Lorsqu’on parle de syntaxe, nous nous référons aux règles de protocole qui font partie d’un processus. D’une certaine manière, il s’agit des règles de grammaire et de style qui rendent un message lisible et compréhensible. On peut dire que le code est l’âme, mais la syntaxe donne forme à cette âme et lui donne le plus nécessaire pour avoir une certaine valeur.

syntaxe-Python

En d’autres termes, la syntaxe de Python facilite fortement la formation à ce langage de programmation, d’où d’ailleurs cet engouement vers ce langage de programmation. Pour les personnes qui ne font que programmer, elle est très facile à comprendre par rapport à d’autres langages de programmation qui sont beaucoup plus compliqués.

Python rend la programmation beaucoup plus facile. Dans de nombreuses situations, lors d’un projet mené en équipe, c’est généralement la faiblesse des autres langages de programmation. Mais c’est tout le contraire avec Python, car le code est beaucoup plus compréhensible.

De quoi se compose une formation Python ?

Une formation Python avec un programme et une qualité pédagogique similaire peut durer 12 mois au maximum. Elle nécessite bien évidemment des supports de cours, que ce soit une formation à distance, initiale ou en continue. Les sessions de formation peuvent comprendre plusieurs modules avec des exercices pratiques ou travaux pratiques en programmation Python (conception de base de données, création des applications avec des interfaces graphiques, développement web…), des pré-requis pour maîtriser ce langage de programmation. Mais avant tout, il faut savoir l’utiliser selon les deux modes de programmation proposés par Python.

Programmation structurée

Python a plusieurs paradigmes de programmation et l’un d’eux est la programmation structurée. Ce paradigme est basé sur 3 sous-programmes :

  • La séquence qui se produit naturellement dans le langage. C’est l’ordre d’exécution dans lequel les instructions sont écrites.
  • La sélection qui est l’exécution de phrases selon une condition.
  • L’itération (cycle ou boucle) qui est l’exécution d’énoncés répétitifs ou non selon une condition vraie.

Programmation orientée objet

Le deuxième paradigme enseigné lors d’une formation Python est la programmation orientée objet, mais uniquement lorsque le premier paradigme est maitrisé. Ici, les étudiants apprennent à fusionner les deux paradigmes pour travailler avec des classes en Python. Ce paradigme est basé sur :

  • L’héritage simple et multiple qui consiste à faire hériter à une classe enfant les méthodes et les attributs d’une classe parent.
  • Le polymorphisme et l’encapsulation où le premier envoie les mêmes messages à différents objets et le second change l’état d’un objet uniquement à travers les opérations définies pour cet objet.
  • La modularité qui consiste à subdiviser une application en modules indépendants.
Dossier

Pourquoi Python est-il populaire auprès des data scientists ?

Le langage de programmation de Python Software Foundation est une programmation orientée objet. Lorsque les data scientists parient sur Python pour le traitement des données volumineuses, ils sont conscients qu’il existe d’autres options populaires telles que R, Java ou SAS. Toutefois, Python demeure la meilleure alternative pour ses avantages dans l’analyse du Big Data.

Pourquoi choisir Python ?

Entre R, Java ou Python pour le Big Data, choisir le dernier (en version majeure ou version mineure) est plus facile après avoir lu les 5 arguments suivants :

1.      Simplicité

Python est un langage de programmation interprété connu pour faire fonctionner les programmes avec le moins de chaînes de caractères et de lignes de code. Il identifie et associe automatiquement les types de données. En outre, il est généralement facile à utiliser, ce qui prend moins de temps lors du codage. Il n’y a pas non plus de limitation pour le traitement des données.

2.      Compatibilité

Hadoop est la plateforme Big Data open source la plus populaire. La prise en charge inhérente à Python, peu importe la version du langage, est une autre raison de la préférer.

3.      Facilité d’apprentissage

Comparé à d’autres langages, le langage de programmation de Guido Van Rossum est facile à apprendre même pour les programmeurs moins expérimentés. C’est le langage de programmation idéal pour trois raisons. Premièrement, elle dispose de vastes ressources d’apprentissage. Deuxièmement, elle garantit un code lisible. Et troisièmement, elle s’entoure d’une grande communauté. Tout cela se traduit par une courbe d’apprentissage progressive avec l’application directe de concepts dans des programmes du monde réel. La grande communauté Python assure que si un utilisateur rencontre des problèmes de développement, il y en aura d’autres qui pourront lui prêter main-forte pour les résoudre.

4.      Visualisation de données

Bien que R soit meilleur pour la visualisation des données, avec les packages récents, Python pour le Big Data a amélioré son offre sur ce domaine. Il existe désormais des API qui peuvent fournir de bons résultats.

5.      Bibliothèques riches

Python dispose d’un ensemble de bibliothèques riche. Grâce à cela, il est possible de faire des mises à jour pour un large éventail de besoins en matière de science des données et d’analyse. Certains de ces modules populaires apportent à ce langage une longueur d’avance : NumPy, Pandas, Scikit-learn, PyBrain, Cython, PyMySQL et iPython.

Que sont les bibliothèques en Python ?

La polyvalence de toutes les versions de Python pour développer plusieurs applications est ce qui a poussé son usage au-delà de celui des développeurs. En effet, il a attiré l’intérêt de groupes de recherche de différentes universités du monde entier. Il leur ont permis de développer des librairies pour toutes sortes de domaines : application web, biologie, physique, mathématiques et ingénierie. Ces bibliothèques sont constituées de modules qui ont un grand nombre de fonctions, d’outils et d’algorithmes. Ils permettent d’économiser beaucoup de temps de programmation et ont une structure facile à comprendre.

Le programme Python est considéré comme le langage de programmation pour le développement de logiciels, de pages Web, d’applications de bureau ou mobiles. Mais, il est également le meilleur pour le développement d’outils scientifiques. Par conséquent, les data scientists sont destinés à aller de pair avec Python pour développer tous leurs projets sur le Big Data.

Python et la data science

La data science est chargée d’analyser, de transformer les données et d’extraire des informations utiles pour la prise de décision. Et il n’y a pas besoin d’avoir des connaissances avancées en programmation pour utiliser Python afin d’effectuer ces tâches. La programmation et la visualisation des résultats sont plus simples. Il y a peu de lignes de code en Python et ses interfaces graphiques de programmation sont conviviales.

Dans le développement d’un projet de science des données, il existe différentes tâches pour terminer ledit projet, dont les plus pertinentes sont l’extraction de données, le traitement de l’information, le développement d’algorithmes (machine learning) et l’évaluation des résultats.

Définitions

R ou Python: Comment choisir ?

On me pose souvent la question: pourquoi avoir commencé à apprendre Python plutôt que R?

A la base, je n’ai pas de réponse, si ce n’est le hasard, puisque j’ai commencé à apprendre Python grâce à Codecademy. Et il semblerait que ce soit difficile d’apprendre les deux en parallèle…

Mais les deux s’opposent-ils vraiment? Choisir, c’est renoncer, alors à quoi devons-nous renoncer exactement?

Continue Reading