Search results for

Data Scientist

Image ordinateur sur canapé
Conseils

Devenir Data Scientist freelance

Depuis ces dernières années, les Data Scientist sont très recherchés par les entreprises. Ces professionnels travaillent avec d’importantes quantités de données ou Big Data. Leur rôle est de faire un croisement entre les données, les traiter et en déduire des conclusions qui permettent aux dirigeants de l’entreprise de prendre des décisions stratégiques en adéquation avec leurs objectifs.

En ce sens, un Data Scientist est un expert indispensable pour toute organisation qui souhaite se développer en anticipant les choix de ses clients grâce à une analyse des données les concernant.

Aujourd’hui, il s’agit d’un des métiers du Big Data (Data Analyst, Data Engineer…), dont la rémunération est l’une des plus élevées. Par considération de l’engouement des entreprises pour les compétences et l’expérience en Data Science, beaucoup se ruent pour décrocher un poste. Cependant, certains trouvent l’idée de devenir un Scientifique des données en freelance plus intéressant.

Le Data Scientist indépendant

Le Data Scientist connaît par cœur ce qu’est de gérer et d’analyser d’importantes quantités de données dans le genre du Big Data. Sa principale tâche est d’identifier des éléments grâce à l’analyse de données, et surtout le traitement de données qu’il a préalablement effectué pour la mise en place d’une stratégie apportant une solution à un problème.

Un freelance Data Scientist est donc un professionnel de la science des données en mission freelance. Tout comme un Scientifique des données en CDI dans une entreprise, il connaît tout ce qu’il faut faire avec le Big Data. Il anticipe les besoins de l’entreprise pour affronter ceux de ses clients.

Pour ce faire, il va :

          Déterminer les besoins de l’entreprise après exploration, analyse et traitement des données

          Conseiller les parties prenantes et les équipes par rapport à ces besoins

          Construire un modèle statistique

          Mettre au point des outils d’analyse pour la collecte de données

          Référencer et structurer les sources de données

          Structurer et faire la synthèse de ces sources

          Tirer parti des informations tirées des résultats

          Construire des modèles prédictifs

Compétences pour devenir Data Scientist freelance

Abaque multicolor

Pour devenir Data Scientist indépendant, il faut bien évidemment avoir les compétences d’un Scientifique de données, à savoir :

  •         Fondamentaux de la science des données
  •         Statistiques
  •         Connaissances en programmation (Python, R, SQL, Scala)
  •         Manipulation et analyse des données
  •         Visualisation de données
  •         Apprentissage automatique (Machine Learning)
  •         Apprentissage en profondeur (Deep Learning)
  •         Big Data
  •         Génie logiciel
  •         Déploiement du modèle
  •         Compétences en communication
  •         Compétences en narration
  •         Pensée structurée
  •         Curiosité
  •         Anglais

Devenir un Data Scientist, que ce soit en interne (dans une entreprise) ou en indépendant, il est nécessaire de suivre une formation spécifique à la Data Science avec ou sans aucune base sur les mathématiques et les statistiques.

En effet, la Science des données nécessite des connaissances en mathématiques, en statistique et en donnée informatique, et d’une certaine manière, en marketing. Être un Data Scientist, c’est devenir un expert dans la Data Science capable d’analyser les données dans le respect de la politique de confidentialité. Il en tire ensuite des informations précieuses permettant d’apporter des réponses aux problèmes actuels et des solutions aux besoins futurs.

Conditions pour devenir Data Scientist indépendant

Une fois que la certitude de pouvoir se lancer en freelance et d’assumer une variété de tâches est présente, il est possible de commencer à penser à passer dans l’environnement indépendant. Voici quelques éléments indispensables pour se lancer :

Expérience dans une variété de missions

Cette expérience peut résulter des études, d’une carrière en entreprise ou même d’un bénévolat. Pour un débutant, l’idéal est de proposer un service de consultant dans une entreprise locale pour acquérir de l’expérience tout en explorant ce qu’il faut pour être un freelance. Mais, il est essentiel d’avoir une expérience bien enrichie pour démontrer qu’une entreprise est très intéressée (ex : chef de projet data).

Portfolio des réalisations

Il est essentiel d’avoir un portfolio qui démontre le niveau de compétence. Cela devrait inclure plusieurs types de projets différents qui mettent en valeur la capacité à effectuer plusieurs types de travail tels que le développement et le test de diverses hypothèses, le nettoyage et l’analyse des données et l’explication de la valeur des résultats finaux.

Support du portfolio

Étant donné que l’un des avantages d’être indépendant est la possibilité de travailler à distance, il y a de fortes chances de décrocher un emploi à distance. Cela signifie que le premier contact avec des clients potentiels sera probablement en ligne. Un bon moyen de présenter les travaux déjà réalisés est de créer un site Web personnel afin de rendre le portfolio facile à parcourir. Il est important d’afficher clairement les moyens de contact.

S’inscrire sur une plateforme de recrutement en ligne

Un Data Scientist indépendant utilise généralement une plateforme en ligne ou un annuaire indépendant pour trouver du travail. Il y en a beaucoup où les entreprises publient des offres d’emploi et les freelances se vendent, ou où les entreprises contactent des freelances avec un projet data en tête.

Avoir de l’initiative pour trouver du travail

Bien que les plateformes de recrutement offrent la possibilité de soumissionner pour des emplois, un Data Scientist en freelance peut également sortir des sentiers battus dans la recherche d’un travail précieux et agréable. Il faut ne pas parfois chercher loin et penser « local » comme des entrepreneurs ou des start-ups qui pourraient bénéficier de compétences en Data Science.

Être leader dans son domaine

Au fur et à mesure que la situation d’indépendant prend de l’ampleur, il est important de mettre en valeur les connaissances et les compétences techniques dans le domaine de la Science des données. Par exemple, il est très vendeur d’être actif sur les forums en ligne pour les Data Scientists ou d’écrire des blogs ou des articles de leadership éclairé pour le site Web personnel. Les employeurs prendront note de ses connaissances, de cette perspicacité et de cette volonté de se démarquer lorsqu’ils recherchent un Data Scientist indépendant.

Avoir la volonté d’apprendre continuellement

Être dans un domaine nouveau et passionnant signifie qu’il faut être ouvert à tous et apprendre davantage sur la Data Science pour répondre aux besoins des futurs clients et plus encore. En ce sens, il ne faut pas hésiter à s’accorder du temps et les ressources nécessaires pour le perfectionnement professionnel comme la formation technique.

Pourquoi devenir Data Scientist indépendant ?

Statistiques sur ordinateur

Maintenant que certaines des étapes clés à suivre sont connues, il est possible de se lancer dans une carrière de Data Scientist indépendant. Cependant, beaucoup se demandent pourquoi devenir un Scientifique des données en freelance.

Après tout, partir seul peut être un parcours intimidant. Il peut être effrayant de se demander où trouver du travail et si on gagne assez d’argent pour que cela en vaille la peine.

Si la présence d’un employeur, de collaborateurs et d’un lieu de travail n’est pas si importante, le statut d’indépendant est intéressant pour un Data Scientist. Voici quelques bonnes raisons de se lancer dans une carrière de freelance.

La place du marché

Le marché du travail indépendant en général a augmenté pour diverses raisons. Les employeurs sont de plus en plus à l’aise avec une main-d’œuvre distante et sont plus ouverts à l’embauche d’entrepreneurs plutôt que d’employés. Le marché des Data Scientists a également augmenté. Les entreprises comprennent de plus en plus la valeur de la Science des données et souhaitent que les efforts créatifs les aident à fournir des analyses et à traduire les informations en idées.

La flexibilité

En tant qu’indépendant, un Data Scientist travaille selon un horaire de travail flexible. Parfois, il doit travailler le week-end pour accélérer un projet. Mais parfois, il peut prendre un après-midi pour se reposer ou faire autre chose. C’est un réel avantage pour beaucoup. La flexibilité de travailler à distance, de n’importe où, est aussi un autre avantage d’être en freelance.

La diversité du travail

Il existe des profils de personnes qui aiment travailler sur une variété de projets pour une variété de clients. Une carrière de Data Scientist indépendant peut être dans ce cas le choix idéal.

Data Scientist art
Dossier

Quel est le salaire d’un data scientist ?

En termes de popularité, le métier de data scientist s’est avéré être un choix de carrière fructueux. La demande mondiale de ce professionnel croit d’année en année. Il est considéré comme un élément essentiel dans l’équipe d’une entreprise. Il apporte des informations permettant de prendre des décisions stratégiques et de fournir un service de qualité aux clients.

Ce cheminement de carrière connait un popularité croissante. Et l’une des principales questions que les gens se posent porte sur le salaire d’un data scientist. Combien pourrait gagner quelqu’un qui souhaite étudier le domaine de la data science et devenir un data scientist ?

Les compétences font la différence

La science des données est un terme assez général, bien que différent de l’analyse de données. Beaucoup de gens avec des spécialités différentes peuvent travailler comme data scientist. Du moins, ils peuvent effectuer certaines des tâches de ce professionnel.

Tous ceux qui souhaitent travailler sur le Big Data et devenir un data scientist ne sont pas tous des sortants de l’université avec un diplôme spécifique. En réalité, il y a d’autres spécialités qui ouvrent les portes des emplois liés aux data sciences, y compris le métier de data analyst.

Dans cet esprit, la chose la plus évidente est que les gens qui se forment pour devenir des data scientists et cherchent un emploi ont généralement des compétences différentes. Certains sont meilleurs dans l’organisation et la segmentation des données via des outils de data mining. D’autres sont compétents dans la détermination des ensembles de données et des variables par le biais de la Machine Learning. C’est pourquoi le salaire d’un data scientist peut varier. Déterminer un salaire moyen stable est un peu difficile même si une étude de PayScale confirme qu’il est estimé à 44 996 euros.

evolution-salaire-data-scientist

Le salaire d’un data scientist junior

Les data scientist juniors représentent le groupe de débutants intéressés par les sciences des données. Le salaire à ce niveau de compétence est un facteur qui affecte le salaire moyen de la profession. En discuter est donc important.

Les data scientists juniors sont des jeunes universitaires fraîchement diplômés en mathématiques ou statistiques qui sont à la recherche d’un emploi. Ils n’ont aucune expérience dans le domaine, sauf au-delà des stages professionnels qu’ils ont pu faire. Ils sont simplement à la recherche d’un premier emploi stable.

Évidemment, lorsqu’on parle de leur salaire, ce sont eux qui gagnent le moins.  L’apprentissage et l’acquisition d’expériences pratiques sont leurs principaux objectifs. Beaucoup d’entreprises embauchent des data scientists juniors en leur offrant une formation en interne et une préparation aux futures tâches.

La fourchette de salaire varie de 45 000 euros à 50 000 euros par ans, que ce soit un poste dans les grandes villes ou en région.

Le salaire d’un data scientist confirmé

Les data scientists confirmés sont considérés comme au milieu lorsqu’on parle de salaire. Ces professionnels ont déjà de l’expérience dans leur domaine (environ 2 à 5 ans). Ils travaillent généralement depuis longtemps dans une entreprise. Ils ont ainsi choisi leur cheminement de carrière et ont commencé à gravir les échelons à travers des expériences pratiques afin d’avoir une augmentation de salaire.

D’un autre côté, ces data scientists n’ont pas tous des emplois stables. Ils recherchent souvent des emplois temporaires ici et là même si honnêtement, ce n’est pas si facile dans ce domaine. Cependant, une chose est sûre : ils savent déjà ce qu’ils font et n’ont pas besoin d’aide.

Ils sont mentionnés quand on parle du salaire moyen d’un data scientist. On peut en effet s’attendre à ce qu’ils gagnent plus que le salaire d’un data scientist junior et moins qu’un data scientist senior. Mais, ce n’est pas souvent le cas.

Un data scientist peut peiner à pouvoir atteindre un niveau « confirmé » et continuer à apprendre les ficelles du métier. Il peut également devenir facilement un employé avec une certaine ancienneté et être sur la bonne voie pour devenir un data scientist « senior ».

Toutefois, de par la nature de son travail et de son expérience, il recevra un salaire bien plus élevé. Généralement, il est dans une fourchette de 51 000 euros à 70 000 euros par an selon le niveau d’expérience.

Le salaire d’un data scientist senior

Enfin, nous arrivons sur le sujet des salaires des data scientists seniors. Ce sont des scientifiques des données chevronnés. Ils sont entièrement dévoués à leur travail et peuvent s’adonner à toutes les tâches dans le domaine de la data science.

Les data scientists seniors sont des personnes qui ont consacré leur vie à leur profession. Ils travaillent généralement pour la même entreprise depuis de nombreuses années et font partie du personnel essentiel de l’équipe (5 à 9 ans d’expérience, voire même 10 à 19 ans d’expérience).

salaire-data-scientist-senior

Si le salaire d’un data scientist junior est le plus bas, celui d’un data scientist senior est à un niveau qui doit être dans les objectifs de carrière de tous les data scientists. Et pour cause, il est l’expert de la data science qui gagne le plus d’argent par rapport à ses autres collègues. Son salaire varie de 69 000 euros à 100 000 euros en fonction des expériences acquises.

data-scientist
Définitions

Data scientist : l’expert du Big Data

L’utilisation quotidienne de services tels que les médias sociaux, la navigation mobile et la numérisation de toutes les transactions font depuis longtemps partie de la vie quotidienne. D’énormes quantités de données en découlent. Non seulement de nouvelles apparaissent chaque jour, mais elles augmentent de façon exponentielle d’année en année.

Les entreprises utilisent ces données au quotidien pour prendre des décisions stratégiques. Le rôle du data scientist est de créer une base de données structurée à partir de ces données brutes. Il y apporte ensuite son analyse et les traite afin qu’elles aient de la valeur et soient utiles (à des fins marketings par exemple).

À première vue, le rôle d’un data scientist semble se résumer à valoriser le Big Data. Cependant, la taille des données et leur caractère hétérogène sont des facteurs qui complexifient ses tâches.

Quelles sont les missions d’un data scientist ?

Le data scientist est un expert du Big Data. Il ne fait pas que collecter des données, mais les traite et les valorise en ce qu’on appelle communément le Smart Data. Pour ce faire, il effectue des analyses avancées via des outils de Business Intelligence (BI) qui s’occupent des processus et des procédures d’analyse commerciale.

Les outils d’analyse de Business Intelligence examinent principalement les données historiques. Les analyses qui sont ainsi réalisées par le data scientist sont non seulement plus avancées sur le plan technologique, mais se concentrent souvent sur la prédiction des tendances. L’analyse prédictive fait partie des analyses avancées faites par cet expert du Big Data. Cela lui permet d’évaluer les effets de certains changements futurs.

Mais avant d’en venir à l’analyse, le data scientist s’assure d’abord qu’il dispose d’une base de données solide. Sans cela, il ne peut apporter des prédictions fiables.

Toutefois, même s’il travaille sur des données brutes, le data scientist n’a pas de difficulté à analyser des données non structurées. En effet, elles le sont généralement au début de leur cycle de vie. Dans ce bric-à-brac d’informations, son travail consiste à extraire uniquement les données pertinentes. Ensuite, il les filtre par ordre d’importance et à les cartographie grâce à des outils de cartographie. Il convertit également l’ensemble de données triées dans le format approprié.

missions-data-scientist

Quelles sont les compétences requises pour devenir data scientist ?

Des connaissances dans des domaines techniques tels que les bases de données ou le génie logiciel sont aussi importants. En effet, le data scientist doit maîtriser des langages de programmation tels que Python ou Java pour développer des algorithmes lui permettant d’utiliser à bon escient les données qui lui sont confiées.

Il doit aussi avoir de solides connaissances dans diverses disciplines. On peut citer les mathématiques et les statistiques. Elles lui permettent de développer des modèles prédictifs qui seront des outils d’aide à la décision. Bien entendu, ses connaissances en mathématiques lui sont utiles pour pouvoir travailler sur des bases de données SQL et NoSQL.

Outre l’aspect académique de ses compétences, le data scientist doit également avoir un esprit analytique. En ce sens, il doit avoir la capacité de réagir de manière rationnelle face à un problème, de faire preuve de logique par rapport à ses décisions.competences-data-scientist

Quelles formations suivre pour être data scientist expert ?

En France, les cours et formations sur le métier de data scientist se multiplient. Quiconque étudie la science des données acquiert les compétences de base avec lesquelles les données peuvent être scientifiquement traitées et évaluées à des fins commerciales. Il existe également des cours de perfectionnement. Ils s’adressent aux personnes ayant déjà étudié les mathématiques, l’informatique ou les statistiques et qui souhaitent poursuivre leur développement professionnel.

Les grandes écoles françaises comme HEC, INP, IAMD (Telecom Nancy), ENSAE ParisTech et Télécom Paris Tech ont récemment ajouté à leurs formations en ingénierie informatique ou en mathématique des cours à destination des candidats au métier de data scientist. Parallèlement, des centres de formation se développent. Ils apportent des solutions répondant aux attentes des entreprises et des particuliers cherchant à devenir un expert de la data science.

Quels sont les salaires proposés aux data scientists ?

La science des données est un secteur qui est encore en plein développement. Mais, les métiers qui y sont liés comme celui du data scientist bénéficient d’une excellente notoriété que les salaires attirent de plus en plus de jeunes diplômés et personnes en réorientation professionnelle.  

Pour un débutant, il peut espérer un salaire net de 35 000 et 38 000 euros par an. Dès lors qu’il a acquis de l’expérience (4 ans minimum), il peut gagner 10 000 à 15 000 euros de plus. Pour le cas d’un data scientist confirmé et expert, le salaire peut aller jusqu’à 60 000 euros par an.

data-scientist-data-analyst
Dossier

Data Scientist vs Data Analyst : Quelle est la différence ?

De nombreuses divergences d’opinions subsistent concernant les rôles et les compétences autour du Big Data. Cela crée beaucoup de confusions. Par conséquent, beaucoup se posent cette question : qu’est-ce qui distingue un data scientist d’un data analyst ?

De nombreux non-initiés à la data science ont une perception du data scientist comme étant juste un terme enjolivé pour définir le data analyst.

Une raison importante de cette imprécision est le fait que certaines entreprises aient plusieurs façons de définir le rôle de chacun de ces experts. Dans la pratique, les titres des métiers ne reflètent pas toujours fidèlement les activités et responsabilités réelles de chacun. Par exemple, il existe des start-ups qui usent du titre de « data scientist » sur des descriptions de poste plutôt destinées à des data analysts.

En outre, la science des données est un domaine qui n’est qu’à ses balbutiements. Les gens connaissent encore très peu de choses concernant son fonctionnement interne. Ainsi, s’il faut comprendre la différence entre un data analyst et un data scientist, il est tout d’abord important de faire un retour sur l’activité et le rôle de chacun d’eux.

Que fait un data analyst ?

Au quotidien, un data analyst collecte des données, les organise et les utilise pour tirer des conclusions pertinentes. La majorité des entreprises de tous les secteurs peuvent nécessiter et bénéficier du travail d’un data analyst. Il peut s’agir des prestataires de soins de santé ou des magasins de détail. Les analystes de données passent leur temps à développer de nouveaux processus et systèmes pour collecter des données et compiler leurs conclusions pour améliorer les affaires.

Le métier de data analyst consiste à fournir des rapports, examiner les modèles et collaborer avec les parties prenantes dans une organisation. Dans cette tâche, l’un de ses rôles consiste à collaborer avec plusieurs services d’une entreprise, y compris avec les experts en marketing. Il se joint également à ses pairs qui travaillent sur des données comme les développeurs de bases de données et les architectes de données.

Il doit également consolider les données et mettre en place une structure qui permette de les utiliser. C’est l’aspect le plus technique de son rôle, car il consiste à collecter les données elles-mêmes. En effet, il s’agit de la clé du travail des analystes de données. Ils travaillent pour visualiser, analyser et examiner les modèles, les erreurs et les particularités des données afin qu’elles aient de la valeur et puissent être utilisées dans plusieurs domaines.

Suivre une formation Data Analyst

data-analyst-data-scientist

Que fait un data scientist ?

Le data scientist est un innovateur en matière d’apprentissage automatique. Contrairement au data analyst, les problèmes ne sont pas soumis au data scientist avec des questions clairement formulées par les parties prenantes de l’entreprise, mais plutôt avec des questions qui sont déterminées par des approches plus techniques. La solution est développée à l’aide d’un large répertoire de méthodes statistiques basées à la fois sur des données structurées et non structurées. Il n’est pas toujours nécessaire que ces données soient déjà disponibles dans l’entreprise et enregistrées de manière bien structurée.

En effet, le data scientist doit acquérir des connaissances en utilisant des données, c’est-à-dire, il analyse les données dans le but de soutenir d’autres départements. Cela lui implique d’utiliser une gamme d’outils tels que Python pour les langages de programmation de ses algorithmes d’apprentissage automatique, des outils d’exploration de données et même des services cloud scientist qualifié doit être capable de faire beaucoup ou au moins être suffisamment flexible pour s’y habituer rapidement.

Ses besoins en infrastructure d’acquisition, de stockage et d’analyse sont par conséquent plus élevés. En plus des données non structurées, les données volumineuses du Big Data sont également enregistrées et analysées. Cela va généralement au-delà des systèmes traditionnels d’entreposage de données et nécessite de nouvelles approches telles qu’un data lake.

Comparaison des compétences d’un data analyst vs data scientist

Les tâches des data analysts et des data scientist se chevauchent à bien des égards. Cela est en partie dû au fait que tout le domaine professionnel autour du Big Data se développe rapidement et que de nouveaux titres de poste émergent constamment sans pour autant être définis de manière uniforme.

Mais, outre ces quelques similitudes, des différences importantes sont à noter et peuvent être résumées sous les trois questions suivantes :

Qui pose les questions ?

Un data scientist formule les questions pour l’entreprise auxquelles il souhaite répondre avec sa base de données. Un data analyst est en revanche chargé par d’autres équipes de l’entreprise de rechercher une solution à leurs questions.

Quel niveau d’étude pour commencer ?

Un data analyst peut commencer sa carrière avec un baccalauréat à composante scientifique . Un master est généralement exigé de la part d’un data scientist parce qu’il doit maîtriser les maths statistiques et les technologies de l’information.

Quel rôle joue la machine learning ?

Le data analyst doit maîtriser le langage SQL et Oracle Database tout en sachant utiliser les outils de veille stratégique tels que Power BI et de visualisation de données comme Shiny et Google Analytics. De son côté, le data scientist développe ses propres modèles d’apprentissage automatique qui utilisent l’ensemble des données comme base de formation pour apprendre de nouvelles choses. 

Dossier

Pourquoi Python est-il populaire auprès des data scientists ?

Le langage de programmation de Python Software Foundation est une programmation orientée objet. Lorsque les data scientists parient sur Python pour le traitement des données volumineuses, ils sont conscients qu’il existe d’autres options populaires telles que R, Java ou SAS. Toutefois, Python demeure la meilleure alternative pour ses avantages dans l’analyse du Big Data.

Pourquoi choisir Python ?

Entre R, Java ou Python pour le Big Data, choisir le dernier (en version majeure ou version mineure) est plus facile après avoir lu les 5 arguments suivants :

1.      Simplicité

Python est un langage de programmation interprété connu pour faire fonctionner les programmes avec le moins de chaînes de caractères et de lignes de code. Il identifie et associe automatiquement les types de données. En outre, il est généralement facile à utiliser, ce qui prend moins de temps lors du codage. Il n’y a pas non plus de limitation pour le traitement des données.

2.      Compatibilité

Hadoop est la plateforme Big Data open source la plus populaire. La prise en charge inhérente à Python, peu importe la version du langage, est une autre raison de la préférer.

3.      Facilité d’apprentissage

Comparé à d’autres langages, le langage de programmation de Guido Van Rossum est facile à apprendre même pour les programmeurs moins expérimentés. C’est le langage de programmation idéal pour trois raisons. Premièrement, elle dispose de vastes ressources d’apprentissage. Deuxièmement, elle garantit un code lisible. Et troisièmement, elle s’entoure d’une grande communauté. Tout cela se traduit par une courbe d’apprentissage progressive avec l’application directe de concepts dans des programmes du monde réel. La grande communauté Python assure que si un utilisateur rencontre des problèmes de développement, il y en aura d’autres qui pourront lui prêter main-forte pour les résoudre.

4.      Visualisation de données

Bien que R soit meilleur pour la visualisation des données, avec les packages récents, Python pour le Big Data a amélioré son offre sur ce domaine. Il existe désormais des API qui peuvent fournir de bons résultats.

5.      Bibliothèques riches

Python dispose d’un ensemble de bibliothèques riche. Grâce à cela, il est possible de faire des mises à jour pour un large éventail de besoins en matière de science des données et d’analyse. Certains de ces modules populaires apportent à ce langage une longueur d’avance : NumPy, Pandas, Scikit-learn, PyBrain, Cython, PyMySQL et iPython.

Que sont les bibliothèques en Python ?

La polyvalence de toutes les versions de Python pour développer plusieurs applications est ce qui a poussé son usage au-delà de celui des développeurs. En effet, il a attiré l’intérêt de groupes de recherche de différentes universités du monde entier. Il leur ont permis de développer des librairies pour toutes sortes de domaines : application web, biologie, physique, mathématiques et ingénierie. Ces bibliothèques sont constituées de modules qui ont un grand nombre de fonctions, d’outils et d’algorithmes. Ils permettent d’économiser beaucoup de temps de programmation et ont une structure facile à comprendre.

Le programme Python est considéré comme le langage de programmation pour le développement de logiciels, de pages Web, d’applications de bureau ou mobiles. Mais, il est également le meilleur pour le développement d’outils scientifiques. Par conséquent, les data scientists sont destinés à aller de pair avec Python pour développer tous leurs projets sur le Big Data.

Python et la data science

La data science est chargée d’analyser, de transformer les données et d’extraire des informations utiles pour la prise de décision. Et il n’y a pas besoin d’avoir des connaissances avancées en programmation pour utiliser Python afin d’effectuer ces tâches. La programmation et la visualisation des résultats sont plus simples. Il y a peu de lignes de code en Python et ses interfaces graphiques de programmation sont conviviales.

Dans le développement d’un projet de science des données, il existe différentes tâches pour terminer ledit projet, dont les plus pertinentes sont l’extraction de données, le traitement de l’information, le développement d’algorithmes (machine learning) et l’évaluation des résultats.

Conseils

Devenir Data Scientist en ligne : mythe ou réalité ?

Devenir Data Scientist en ligne, mythe ou réalité ? Grâce à l’expérience d’apprenants, nous apportons des réponses à vos questionnements ! Bienvenue dans le premier épisode d’une série d’articles autour de la formation data en ligne ! 

Construire des modèles, apporter du sens aux données de l’entreprise et les rendre lisibles pour le commun des mortels : telles sont les missions quotidiennes d’un Data Scientist. Si vous aussi souhaitez manier la data comme un maître et apporter votre valeur ajoutée à l’entreprise. Restez avec nous, on vous explique comment faire !

Pourquoi devenir Data Scientist ? 

Le métier de Data Scientist est un métier d’avenir. D’ailleurs, selon le Harvard Business c’est le “métier le plus sexy du 21e siècle”. Ce n’est pas nous qui le disons, c’est Harvard et généralement ils savent de quoi ils parlent 😉 !  En effet, avec les nouveaux besoins issus des données massives de notre époque, plus communément connue sous l’ère du Big Data, c’est un métier qui est extrêmement recherché. Les géants comme Google, Amazon, Facebook en recrutent énormément depuis quelques années. 

Souvent, le métier de data scientist se concentre sur la mise en place d’algorithmes basés sur la donnée pour apporter des solutions à des problématiques aussi diverses que variées. Que ce soit de la détection d’anomalies, de la prévision ou de la gestion de risque, le Data Scientist est capable de répondre à ces enjeux grâce à son fer de lance : ses modèles.

Thibault, un Data Scientist ayant suivi une formation en ligne, a réussi à trouver une image parfaite pour décrire les outils du Data Scientist :  

« les modèles pour un Data Scientist sont ce que l’arc et les flèches sont pour Robin des bois »

Si cette image vous met l’eau à la bouche, je vous invite à découvrir plus en détails la formation adéquate pour devenir Data Scientist. De nombreux organismes de formation proposent des formations dont DataScientest, l’entreprise leader de la formation en Data Science.

 

Devenir Data Scientist en ligne, c’est possible ?

Effectivement, c’est tout à fait possible voire encouragé ! On pense que ce type de formation peut être extrêmement bénéfique pour l’expérience personnelle de l’apprenant. Après tout, chaque Data Scientist qui se respecte se doit d’être à l’aise sur un ordinateur 😉 ! 

L’avantage principal d’une formation en ligne est  « la flexibilité personnalisable » selon Marie, issue d’une formation intensive de 11 semaines à l’issue de laquelle elle a décroché une certification Data Scientist reconnue par la Sorbonne : 

«  La formation Data Scientist en ligne permet d’avancer à son rythme et en fonction de ses contraintes tout en bénéficiant d’un accompagnement  de bout à bout tout . »

La mise en place d’une plateforme d’apprentissage pour du “learning by doing”, permet de suivre votre évolution et votre parcours. 

 

Par ailleurs, Chad, un apprenant international qui a suivi  une  formation en anglais, partage des éléments pour rassurer les personnes qui auraient encore des hésitations. Il faisait référence par exemple, au matériel informatique utilisé se former et se lancer dans la formation de Data Scientist en ligne :

 « At first, I thought that I needed a specific material like a powerful laptop to join the training but I was wrong ! »  

Yes, he was wrong car grâce aux outils technologiques tels qu’une plateforme Full SaaS par exemple, vous n’avez plus besoin d’avoir un ordinateur spécifique mais juste un bon accès à internet et le tour est joué. 

D’autres prérequis évoqués par Sarah sont « la communication et l’autodiscipline », qui lorsqu’ils sont absents peuvent à priori mettre à mal l’apprentissage en ligne. Encore une fois, des solutions existent pour pallier ces lacunes.  En effet, DataScientest par exemple propose un accompagnement à tout instant : 

 «  Grâce à un accès h24 à la plateforme, le support et la présence continuelle de la part de nos formateurs, je me suis sentie accompagnée et remotivée dès que j’avais des coups de mou. »

 

Bref, je vous ai expliqué en quelques mots en quoi consistait  une formation Data Scientist en ligne, Si vous souhaitez plus d’informations concernant ce métier et la formation adéquate, n’hésitez pas à vous orienter vers un de nos organismes partenaires  !

Actualités

Je suis Data Scientist !

Tout vient à point à qui sait attendre 🙂

Je viens tout juste de rejoindre les équipes d’Alphalyr, start-up parisienne spécialisée sur Google Analytics qui propose des prestations d’hygiène analytics, de la visualisation de données et du data coaching – j’adore ce concept ! Tout pour optimiser ses datas sur le web !

Et j’ai l’immense honneur d’y devenir Data Scientist – en herbe, d’accord, mais data scientist tout de même 🙂

Continue Reading