Search results for

business intelligence

Brainstorm business intelligence
Dossier

Power BI: solution de Business Intelligence pour les entreprises

Il existe de nombreux outils appliqués au secteur des entreprises qui, dans bien des cas, facilitent la prise de décision pour les parties prenantes, des chefs de département aux équipes commerciales et jusqu’au Directeur général. Si aujourd’hui, nous manipulons de plus en plus de données et d’informations pour prendre des décisions, nous devons avoir l’aide supplémentaire de la technologie et nous appuyer sur des solutions logicielles d’entreprise pour rationaliser ces tâches.

Les solutions logicielles Microsoft Power BI, qui en Anglais se réfère à Business Intelligence, et que l’on peut traduire par l’intelligence d’affaires. Il s’agit de solutions commerciales qui aideront les responsables des entreprises à accélérer le processus de prise de décision.

La différenciation des entreprises passe par une prise de décision correcte. Aujourd’hui, nous vivons dans une époque entièrement numérique où les décisions doivent reposer sur une base solide d’informations et de données bien contrastées.

BI ou Business Intelligence

Power BI

Parler de Power BI, c’est parler des services Power BI, c’est-à-dire, de l’ensemble de solutions et des méthodes axées sur l’analyse et la compréhension du Big Data. Ce dernier fait ici référence au grand volume de données qui sont générées à la fois dans les environnements professionnels et personnels, que ce soit par les personnes ou toute autre entité constituée de plusieurs individus.

Tous ces outils sont compilés sous les méthodologies d’un plan d’affaires d’entreprise qui doit se concentrer sur la collecte, l’analyse et la vérification du Big Data afin de développer une trajectoire visuelle et synthétisée.

Si l’on veut vraiment disposer d’une solution logicielle de Business Intelligence, elle doit permettre de faire :

          Des extractions de données volumineuses

          De l’analyse de données en temps réel

          De la création de modèles de données

          Des visualisations de données

          De la création de rapports

À partir de ces lignes directrices, toute entité commerciale doit localiser et travailler sur les incidents qui se sont produits et choisir l’option la plus bénéfique et la plus correcte pour l’entreprise.

Microsoft Power BI pour les entreprises

Power BI est une solution de Business Intelligence présentée par Microsoft. Elle est axée sur les entreprises et les indépendants et permet de disposer à tout moment et en tout lieu de toutes les informations et de la situation de l’entreprise.

En utilisant Power BI, il est possible de créer des rapports et des visualisations personnalisées présentant l’ensemble de l’entreprise. Cela se fait par le biais de tableaux de bord générés par diverses bases de données, l’évolution des projets, le développement commercial et plusieurs autres actions de l’entreprise.

Power BI est l’un des outils de Microsoft qui ont la possibilité d’être localisés dans le Cloud, ce qui permet de connaître de manière rapide les informations les plus importantes des différents panneaux qui sont continuellement mis à jour.

Les données collectées pour cet outil sont produites à partir de sources de données très diverses, y compris à une base de données Microsoft SQL Server.

À travers le programme, on peut développer et connecter des bases de données, configurer l’évolution graphique pour plusieurs objectifs : évaluer l’état de l’entreprise, analyser l’évolution des ventes, connaître le volume des commandes, vérifier les paiements fournisseurs et bien d’autres actions d’analyse, le tout en temps réel.

Une autre nouvelle fonctionnalité de la solution Power BI Desktop est son canevas à partir duquel des onglets peuvent être générés selon les besoins. Cela permet à l’utilisateur de créer sa propre idée, de mieux comprendre, d’interpréter et d’avoir une plus grande capacité d’argumentation lorsque les parties prenantes de l’entreprise devront prendre des décisions sur la base des données.

Et bien sûr, tout cela a l’avantage d’être disponible et opérationnel dans l’environnement de l’informatique en nuage. Le Cloud se chargera d’effectuer et de générer les opérations et les calculs nécessaires pour obtenir les résultats.

Enfin, il faut souligner une autre des caractéristiques des plus attrayantes. Il s’agit de la possibilité de sauvegarder les informations sur ordinateur et ensuite de publier les données et les rapports depuis le site Power BI pour les partager avec d’autres utilisateurs en ligne.

Quels sont les avantages de l’application de Power BI ?

Employés faisant du business intelligence

Tous les départements d’une entreprise sont essentiels au bon fonctionnement de celle-ci. Si l’un d’entre eux échoue dans ses objectifs, une chaîne d’échecs se produira. Par conséquent, l’entreprise dans son ensemble en souffrira également. C’est là qu’intervient l’outil Power BI.

Les solutions Microsoft pour entreprises (Power BI, Power Query, Office 365…) permettent la transformation numérique pour un travail beaucoup plus productif. L’outil Power BI permet d’intégrer tous les départements dès sa mise en œuvre.

En effet, il existe 4 avantages pertinents concernant cette solution de Business Intelligence :

          Accessibilité : les bases de données et les services Power BI sont à la fois accessibles dans le Cloud et sur Desktop.

          Informations mises à jour en temps réel : lorsque des problèmes ou des opportunités sont détectés instantanément, une plus grande optimisation du fonctionnement de l’entreprise est obtenue. Avec Power BI, cette détection et cette identification se font en temps réel.

          Interface intuitive : les informations sont claires et hiérarchisées et proviennent depuis tous les départements de l’entreprise. Elles sont également intuitives pour garantir une accessibilité complète à tout utilisateur.

          Agilité : de par sa conception, sa stratégie d’organisation et sa hiérarchie, Power BI permet une restitution détaillée des informations autant de fois que nécessaire. La mise à jour se fait en temps réel.

En conclusion, Microsoft Power Bi est une application intelligente et prédictive qui est un grand encouragement pour les entreprises et leurs dirigeants lorsqu’il s’agit d’interpréter et d’analyser toutes les informations. Il permet d’interpréter tous types de données et de les afficher dans des graphiques totalement compréhensibles par tous. D’ailleurs, Power BI a encore une fois été élue meilleure plateforme d’analyse de données et de Business Intelligence dans le Magic Quadrant de Gartner.

Table de travail d'un business analyst
Définitions

Analyse Commerciale : Découvrez le monde de la Business Analytics

Dans le paysage commercial actuel, l’analyse est devenue un pilier essentiel pour orienter les choix stratégiques et favoriser la croissance. L’émergence du Big Data et des innovations technologiques a donné lieu à une discipline indispensable : la Business Analytics. Ce champ d’expertise explore et valorise les données pour révéler des insights pertinents, des tendances occultes et des orientations stratégiques. Il permet ainsi aux entreprises de prendre des décisions avisées tout en acquérant un avantage compétitif.

Qu’est-ce que la Business Analytics ?

La Business Analytics, aussi connue sous le nom d’analyse commerciale, est une discipline essentielle en affaires. Elle concerne la collecte, le traitement et l’analyse de données dans le but de fournir des insights actionnables. Ce champ permet aux entreprises de s’appuyer sur des données concrètes pour orienter leur stratégie, plutôt que sur de simples hypothèses. Au lieu de se limiter à l’examen des tendances historiques, la Business Analytics exploite des méthodes avancées pour révéler des motifs, relations et opportunités souvent méconnus. Par l’emploi de techniques variées, comme les analyses statistiques et les modèles prédictifs, elle aide les organisations à mieux comprendre leur position actuelle, à prévoir les évolutions futures et à optimiser leurs opérations.

Elle couvre une gamme variée de secteurs, de la finance au marketing en passant par la gestion des ressources humaines et la logistique. Elle intègre non seulement les données internes, mais aussi des informations externes pour offrir une vue globale. Avec les progrès technologiques et la montée en puissance de l’intelligence artificielle, la Business Analytics a évolué de manière significative. Elle propose désormais des solutions sophistiquées en matière de visualisation de données, de prédiction de tendances et d’optimisation des processus. En résumé, elle est devenue un levier essentiel pour toute organisation cherchant à prendre des décisions fondées dans un environnement d’affaires en constante mutation.

Différence entre Business Analytics et Business Intelligence

Bien que les termes « Business Analytics » et « Business Intelligence » puissent parfois être considérés comme synonymes, ils se distinguent par leurs approches et leurs objectifs en matière de données d’affaires. La Business Intelligence (BI) met l’accent sur l’agrégation, l’organisation et la visualisation des données historiques de l’entreprise. Elle offre une perspective rétrospective, alimentant ainsi la prise de décisions basées sur des informations passées.

À l’inverse, la Business Analytics (BA) va plus loin en s’intéressant à l’anticipation des performances à venir. Elle utilise des méthodes sophistiquées comme l’analyse prédictive, la modélisation statistique et même l’apprentissage machine pour éclairer sur des tendances, des relations et des corrélations inexplorées. Son but ultime est d’orienter des décisions stratégiques et opérationnelles plus éclairées. En somme, tandis que la BI se consacre à une compréhension rétrospective des données, la BA se focalise sur des analyses avancées pour guider l’avenir.

L’Impact du Business Analytics sur la Prise de Décision

L’adoption de la Business Analytics dans le processus décisionnel a révolutionné la stratégie d’entreprise. Avec une analyse de données poussée, les dirigeants disposent d’éléments concrets pour orienter leurs choix. Ces outils d’exploration révèlent des tendances et des relations complexes, souvent sources d’aperçus inattendus. Ainsi, les entreprises peuvent non seulement anticiper des opportunités mais aussi des risques, tout en s’appuyant sur des données fiables pour leurs décisions.

L’influence de la Business Analytics s’étend également à l’efficacité opérationnelle. En ajustant les processus internes à partir des analyses de données, les organisations ont la possibilité de minimiser les coûts, maximiser la productivité et améliorer le service client. Par exemple, l’exploration de données peut mettre en lumière des zones d’inefficacité dans la chaîne d’approvisionnement, optimiser la gestion des stocks ou encore personnaliser l’expérience client. À l’ère du numérique, la Business Analytics constitue un levier stratégique pour les entreprises cherchant à se démarquer et à s’adapter dans un environnement dynamique.

Exemples Concrets d’Application

Dans divers secteurs d’activité, la Business Analytics trouve des applications concrètes. En commerce de détail, elle permet, via l’analyse prédictive, d’anticiper les goûts des consommateurs pour une gestion optimale des stocks et une réponse efficace à la demande. Elle intervient également dans la tarification dynamique pour s’ajuster en temps réel selon la demande et les concurrents.

En santé, la Business Analytics facilite la prise de décisions médicales en prédisant les admissions futures et en allouant judicieusement les ressources. Elle aide aussi à cerner les facteurs de risque pour les patients et accélère la découverte de nouveaux médicaments.

Dans le secteur des médias et du divertissement, elle joue également un rôle significatif. Les services de streaming utilisent ces analyses pour personnaliser les recommandations, augmentant ainsi l’engagement utilisateur. Les studios de cinéma, de leur côté, ont recours à l’analyse prédictive pour estimer les performances potentielles de nouveaux films et ajuster leurs campagnes publicitaires en conséquence.

Cette polyvalence démontre que la Business Analytics s’impose comme un élément clé dans plusieurs industries, apportant des bénéfices concrets en matière de prise de décision, d’optimisation des opérations et d’innovation.

Les Compétences Requises pour une Carrière en Business Analytics

Pour débuter une carrière en analyse commerciale, un panel de compétences diversifié est requis, notamment en statistiques, en programmation et en communication. Comprendre les méthodes statistiques pour examiner des données et anticiper des tendances est fondamental.

L’aptitude à manipuler des outils d’analyse s’avère également indispensable. Cela englobe la maîtrise de langages comme Python ou R et la compétence pour travailler sur des plateformes SQL destinées à la gestion de bases de données. Savoir visualiser les données via des outils comme Tableau ou Power BI est un autre atout, permettant de rendre les résultats accessibles et intuitifs.

Au-delà des compétences purement techniques, l’analyse commerciale exige également un bon sens de la communication et du travail en équipe. Savoir décomposer des résultats analytiques complexes en messages simples pour les parties prenantes non initiées est crucial. Des aptitudes en pensée critique et en résolution de problèmes complètent le profil, aidant à cerner les enjeux d’analyse, à concevoir des stratégies adaptées et à contextualiser les résultats.

Ainsi, une carrière réussie en analyse commerciale allie des compétences techniques, des capacités d’analyse et des qualités relationnelles pour fournir une réelle plus-value aux entreprises.

Tendances Actuelles dans le Business Analytics

Le secteur de la Business Analytics est en pleine mutation, avec l’émergence de plusieurs tendances cruciales. Parmi celles-ci, l’intégration de l’intelligence artificielle (IA) et de l’apprentissage automatique dans les pratiques d’analyse prend de l’ampleur. L’objectif est d’exploiter ces technologies pour détecter des schémas plus élaborés et pour automatiser un nombre croissant de fonctions analytiques, ouvrant ainsi la voie à des solutions plus avancées et prédictives.

Une autre évolution notable est le recours croissant à l’analyse en temps réel. Les entreprises s’orientent de plus en plus vers des dispositifs permettant une prise de décision immédiate en se basant sur des données en cours de production. Ceci requiert des infrastructures de données et d’analyse agiles et performantes, ainsi que l’adoption de technologies comme le traitement en mémoire et les plateformes d’analyse en temps réel.

La question de la confidentialité et de la sécurité des données reste également un enjeu de taille. Une attention accrue est portée aux techniques d’anonymisation et de sécurisation des données pour répondre à ces préoccupations.

En résumé, la Business Analytics poursuit sa transformation pour s’adapter aux besoins fluctuants des entreprises dans un environnement toujours plus centré sur les données. Les évolutions en matière d’IA, d’analyse en temps réel et de sécurité des données soulignent l’importance grandissante de ce domaine dans la prise de décision et l’impulsion de l’innovation.

Formations

Formation Intelligence artificielle : pourquoi et comment devenir expert en IA ?

Quelle est l’évolution de l’IA au fil du temps ?

Depuis les premiers travaux de recherche dans les années 1950, l’Intelligence artificielle a pour but de créer des systèmes informatiques et des machines capables de réaliser des tâches exigeant normalement une intelligence humaine.

Elle vise à développer des algorithmes et des modèles permettant aux machines d’apprendre, de raisonner, de reconnaître des motifs, de prendre des décisions et de résoudre des problèmes de manière autonome.

Après une longue période de stagnation surnommée « hiver de l’IA », l’intérêt pour cette technologie a connu une résurgence majeure au cours des dernières années grâce aux avancées dans le domaine de l’apprentissage automatique. En particulier, l’utilisation des réseaux neurones profonds et du deep learning ont permis l’émergence de nouveaux cas d’usage.

Le machine learning permet aux ordinateurs d’apprendre à partir de données et de s’améliorer avec l’expérience. C’est ce qui permet à Amazon de recommander des produits, à Gmail de suggérer des réponses aux messages, ou à Spotify de vous conseiller de nouvelles musiques.

De même, le traitement du langage naturel (NLP) est une technique d’IA permettant aux machines de comprendre et d’interagir avec le langage humain. Les chatbots de service client et les assistants vocaux comme Apple Siri reposent sur cette technologie.

Avec l’apparition récente des Larges Modèles de Langage comme OpenAI GPT ou Google PaLM, de nouveaux outils ont vu le jour en 2022 : les IA génératives, telles que ChatGPT ou Bard.

Désormais, l’Intelligence artificielle est capable de générer n’importe quel type de contenu écrit, visuel ou même audio à partir d’un simple prompt entré par l’utilisateur.

C’est une révolution, mais il ne s’agit que d’un début. Dans un futur proche, l’IA servira de cerveau à des robots de forme humanoïde capables d’effectuer toutes sortes de tâches manuelles comme le Tesla Optimus.

À plus long terme, les recherches pourraient mener à la naissance d’une « Intelligence artificielle générale » qui serait équivalente ou même supérieure à l’intelligence humaine

Il ne fait aucun doute que l’IA va changer le monde et permettre d’automatiser de nombreuses tâches intellectuelles ou manuelles. En contrepartie, beaucoup de métiers risquent de disparaître et plusieurs experts redoutent une vague de chômage sans précédent.

Toutefois, cette technologie va aussi créer des millions de nouveaux emplois. À mesure qu’elle évoluera, de nouveaux cas d’usage apparaîtront et la demande en experts capables de créer, de gérer ou d’appliquer l’Intelligence artificielle va s’accroître.

Afin de profiter de ces nouvelles opportunités professionnelles, suivre une formation en IA est un choix très pertinent pour votre carrière. Voici pour quelles raisons.

 

Pourquoi suivre une formation d’Intelligence artificielle ?

Selon le Forum Économique Mondial, le nombre d’emplois remplacés par l’IA sera largement surpassé par le nombre d’emplois créés. D’ici 2025, plus de 97 millions de nouveaux postes pourraient voir le jour.

Mieux encore : il s’agirait de rôles « plus adaptés à la nouvelle division du travail entre les humains, les machines et les algorithmes ».

Par conséquent, apprendre à maîtriser l’Intelligence artificielle dès à présent peut être un précieux sésame pour les futurs métiers de l’IA ou pour incorporer la technologie à votre profession actuelle.

La technologie va continuer de s’améliorer au cours des prochaines années, et s’étendre à des secteurs et champs d’application toujours plus diversifiés.

Elle est déjà utilisée dans de nombreuses industries telles que la finance, la médecine, la sécurité ou l’automobile et sera bientôt utilisée dans tous les domaines.

Face à la forte demande, les professionnels de l’IA peuvent bénéficier d’une rémunération élevée. Selon Talent.com, leur salaire médian en France atteint 45 000€ par an et dépasse 70 000€ pour les plus expérimentés. 

Suivre une formation IA

Les métiers de l’IA et leurs salaires

L’ingénieur en Intelligence artificielle ou ingénieur IA est un professionnel utilisant les techniques d’IA et de Machine Learning pour développer des systèmes et applications visant à aider les entreprises à gagner en efficacité.

Cet expert se focalise sur le développement d’outils, de systèmes et de processus permettant d’appliquer l’IA à des problèmes du monde réel. Les algorithmes sont entraînés par les données, ce qui les aide à apprendre et à améliorer leurs performances.

Ainsi, un ingénieur IA permet à une organisation de réduire ses coûts, d’accroître sa productivité et ses bénéfices, et à prendre les meilleures décisions stratégiques. Selon Glassdoor, son salaire moyen atteint 40 000 euros en France et 120 000 dollars aux États-Unis.

De son côté, l’ingénieur en Machine Learning ou ML Engineer recherche, conçoit et construit l’IA utilisée pour le machine learning. Il maintient et améliore les systèmes existants, et collabore avec les Data Scientists développant les modèles pour construire les systèmes IA.

Au quotidien, ce professionnel mène des expériences et des tests, effectue des analyses statistiques et développe des systèmes de machine learning. Son salaire dépasse 50 000 euros en France selon Glassdoor, et 125 000 dollars aux États-Unis.

Un autre métier lié à l’IA est celui de Data Engineer. Il se charge de collecter, gérer et convertir les données brutes en informations exploitables pour les data scientists et autres analystes métier. Le salaire moyen est de 115 592 dollars aux États-Unis et 45 000 euros en France d’après Glassdoor.

De même, le Data Scientist utilise les données pour répondre aux questions et résoudre les problèmes d’une entreprise. Il développe des modèles prédictifs utilisés pour prédire les résultats, et peut utiliser les techniques de machine learning. Son salaire médian est de 48 000 euros en France et 126 000 dollars aux États-Unis.

L’ingénieur logiciel ou Software Engineer a lui aussi un rôle à jouer dans l’Intelligence artificielle. Il utilise le code informatique pour créer ou améliorer tout type de programme. Son salaire moyen atteint 55 000 euros en France et 107 000 dollars aux États-Unis.

Selon un rapport de McKinsey, en 2022, 39% des entreprises ont recruté des ingénieurs logiciels et 35% ont employé des Data Engineers pour des postes liés à l’IA.

Enfin, l’Intelligence artificielle sera très bientôt incorporée aux robots et les ingénieurs en robotique feront donc aussi partie des métiers de l’IA.

Ils se chargent de concevoir de nouveaux produits ou d’assembler des prototypes pour les tester, et observent leurs performances. Ce métier combinant l’ingénierie mécanique et électrique avec l’informatique permet de percevoir un salaire dépassant 42 000 euros par an et 100 000 dollars aux États-Unis.

Il ne s’agit là que de quelques exemples de métiers de l’IA. À l’avenir, de nombreuses autres professions vont apparaître comme celle du Prompt Engineer chargé de concevoir les prompts pour obtenir les meilleurs résultats avec un outil comme ChatGPT.

Quel que soit le rôle que vous souhaitez exercer dans le domaine de l’IA, il est essentiel de suivre une formation pour acquérir l’expertise requise.

Comment suivre une formation d’Intelligence artificielle ?

Pour lancer votre carrière dans l’Intelligence artificielle, vous pouvez obtenir une certification professionnelle afin de démontrer votre expertise aux employeurs.

Parmi les certifications IA les plus reconnues à l’heure actuelle, on compte la certification « MIT: Artificial Intelligence: Implications for Business Strategy », les certificats d’ingénieur, consultant et scientifique IA de l’USAII, ou encore le titre d’Artificial Intelligence Engineer ARTIBA.

Afin d’obtenir un diplôme et d’assimiler toutes les compétences indispensables pour travailler dans l’IA. Vous pouvez choisir DataScientest. Nos formations Machine Learning Engineer, Data Engineer ou Data Scientist vous permettront d’obtenir l’expertise requise pour exercer le métier de vos rêves.

Vous découvrirez notamment les fondamentaux de l’Intelligence artificielle, le machine learning, le traitement naturel du langage (NLP), la vision par ordinateur (Computer Vision), ou encore les enjeux éthiques liés à l’IA.

Commencer une formation sur l’IA

Formations

Direct Query sur Power BI : Avantages, configuration et alternatives

Direct Query est une méthode permettant une connexion directe à une source de données avec Power BI. Découvrez tout ce que vous devez savoir : présentation, fonctionnement, avantages et inconvénients…

L’outil de business intelligence Power BI de Microsoft permet aux entreprises d’analyser et de visualiser des données de manière interactive. Il s’agit d’une plateforme complète, offrant de nombreuses fonctionnalités pour transformer les données brutes en informations exploitables pour la prise de décision stratégique.

Parmi ces différentes fonctionnalités, Direct Query permet de se connecter directement à une source de données externe. Par la suite, il est possible de travailler en temps réel avec les données sans avoir besoin de les copier comme c’est le cas avec la méthode classique d’importation.

À travers ce dossier, vous allez découvrir tout le fonctionnement de Direct Query et pourquoi cette méthode s’avère très utile dans certaines situations…

Qu’est-ce que Direct Query ?

À l’aide de Direct Query, les utilisateurs de Power BI peuvent se connecter directement à une source de données externes. Il peut s’agir d’une base de données, d’un fichier Excel, ou encore d’un service en ligne.

Dès que la connexion est établie, la requête est effectuée sur les données à la source et en temps réel. Les résultats sont ensuite affichés dans les visualisations de Power BI.

Afin de communiquer avec la source de données, Direct Query utilise un langage de requête comme SQL. Grâce à l’exécution en temps réel, les données sont toujours à jour et les résultats sont instantanés.

Apprendre à maîtriser Direct Query

Avantages et inconvénients

La possibilité d’accéder aux données en temps réel est l’un des principaux avantages offerts par Direct Query sur Power BI. Ceci permet une analyse des données plus précise, et plus efficace.

Par ailleurs, Direct Query évite le stockage redondant des données puisqu’il n’est pas nécessaire de les copier. Ainsi, les coûts de stockage peuvent être largement réduits.

Autre point fort : Direct Query peut exploiter des sources de données volumineuses sans avoir à les importer dans Power Query. Les utilisateurs n’ont donc guère à se soucier des limitations imposées par le stockage local.

Enfin, cette fonctionnalité permet d’optimiser les performances des rapports. Les données n’étant pas stockées localement, la taille du fichier est réduite et les temps de chargement s’en trouvent améliorés. Les problèmes de ralentissement sont également atténués.

Néanmoins, Direct Query comporte aussi des inconvénients et n’est donc pas toujours le choix idéal. Cette méthode de connexion directe impose une dépendance à une source de données en ligne, pouvant poser problème en cas de problème de connexion. Les temps de réponse peuvent augmenter.

Par ailleurs, les capacités de traitement de données sont limitées. La configuration de l’outil peut aussi s’avérer complexe…

Comment configurer Direct Query ?

La configuration de Direct Query s’effectue en plusieurs étapes. En premier lieu, il est nécessaire de se connecter à la source de données externes puis de créer un rapport dans Power BI.

On configure ensuite Direct Query afin d’utiliser les données en temps réel. Enfin, les visualisations et les filtres doivent être définis dans le rapport afin d’afficher les données.

Notons que la configuration de Direct Query peut varier en fonction de la source de données externe. C’est ce qui peut rendre la tâche potentiellement compliquée.

Par exemple, pour vous connecter à une base de données SQL Server, vous devrez sélectionner « Direct Query » comme méthode de connexion dans Power BI Desktop puis spécifier les informations de connexion à la base de données.

Précisons aussi que les fonctionnalités de transformation de données ne sont pas disponibles avec Direct Query. Par conséquent, toutes les transformations doivent être effectuées dans la source externe avant d’utiliser les données dans Power BI.

Enfin, certains types de données ne sont pas pris en charge par Direct Query. C’est notamment le cas des données semi-structurées.

Apprendre à utiliser Power BI

Direct Query vs Import : quelle est la meilleure méthode de connexion aux sources de données sur Power BI ?

Les deux principales méthodes de connexion à une source de données dans Power BI sont Direct Query et l’importation de données.

Cette dernière consiste à extraire les données de la source, afin de les stocker localement sur Power BI. C’est une alternative à la connexion directe offerte par Power BI.

En réalité, l’importation est la méthode la plus couramment utilisée. Après avoir extrait les données de la source, on les transforme en fonction des besoins avant de les stocker sur la plateforme.

Cette méthode est utile pour les sources de données volumineuses ou instables. Les données sont stockées localement, et les rapports peuvent donc être consultés indépendamment de la disponibilité de la source.

En revanche, ce stockage local peut consommer beaucoup d’espace sur le disque dur. Le volume d’importation est d’ailleurs limité à 1Go. De plus, les données peuvent rapidement devenir obsolètes si la source change fréquemment.

Conclusion : Direct Query, une alternative à l’importation de données sur Power BI

En conclusion, Direct Query est une fonctionnalité utile et puissante et Power BI permettant de travailler avec des données en temps réel et sans stockage redondant.

Toutefois, dans certains cas, il peut être préférable d’opter pour l’importation des données. Il est donc important de bien comprendre les avantages et inconvénients de chacune de ces méthodes.

Afin d’apprendre à maîtriser Power BI et ses nombreuses fonctionnalités comme Direct Query, vous pouvez choisir DataScientest.

Notre formation dédiée à Power BI se décline en trois formats : débutant, avancé ou maîtrise complète. La durée totale du programme est de 38 heures réparties sur 5 jours.

La partie destinée aux débutants permet d’apprendre à manier Direct Query et la connexion aux sources de données, le langage DAX et les bases de la dataviz.

Par la suite, au cours de la partie dédiée aux utilisateurs avancés, vous découvrirez le langage de formule M, ou encore des notions comme les DataFlows et l’actualisation incrémentielle.

À l’issue du cursus, vous serez capable de collecter, d’organiser, d’analyser les données avec Power BI et de créer des tableaux de bord interactifs. En tant que Microsoft Learning Partner officiel, DataScientest vous prépare aussi au passage de la certification Microsoft Power BI Data Analyst Associate.

Notre formation est également enregistrée au RNCP France Compétences, et notre organisme reconnu par l’État est éligible au Compte Personnel de Formation pour le financement. Découvrez DataScientest !

Découvrir la formation Power BI

Vous savez tout sur Direct Query dans Power BI. Pour plus d’informations sur le même sujet, découvrez notre dossier complet sur Power BI et notre dossier sur le langage DAX.

Actualités

Logo Power BI : découvrez son histoire et sa signification

Le logo de Power BI a évolué au fil du temps pour illustrer les transformations et la croissance de cette plateforme devenue référence dans le domaine de l’analyse de données. Découvrez son histoire, et sa véritable symbolique…

Bien plus qu’une simple image, un logo est souvent perçu comme le visage d’une marque. Il s’agit d’un symbole visuel qui évoque des émotions, des souvenirs chez les spectateurs et raconte l’histoire d’une entreprise ou d’un produit.

C’est exactement le cas du logo de la plateforme de business intelligence Power BI de Microsoft. Au fil des années, il a connu de multiples évolutions pour refléter les changements et l’ajout de nouvelles fonctionnalités. C’est la raison pour laquelle il est très intéressant de l’analyser…

Le logo originel de 2013 à 2016

Lors du lancement initial de Power BI, le logo était composé de cinq éléments jaunes placés contre un fond blanc. Il représentait, de manière abstraite, un tableau analytique avec quatre colonnes de taille croissante dans un cadre symbolisant un écran de PC.

À la fois dynamique et claire, cette image traduisait parfaitement le but et la philosophie de Power BI. L’absence de texte mettait l’accent sur le sérieux de la plateforme et son indépendance des programmes existants, tandis que les angles arrondis donnaient aux utilisateurs un sentiment de sécurité.

Une première refonte de 2016 à 2020

En 2016, Microsoft a modifié le logo de Power BI pour la première fois. Le cadre représentant un écran est devenu droit, alors qu’il était tourné sur le côté auparavant. L’épaisseur des bordures a aussi été réduite, sans doute pour retranscrire la disparition des bordures sur les écrans de PC et de smartphone survenue à cette époque.

Les extrémités des quatre colonnes ont été arrondies, afin de conférer un design global plus adouci au logo. Les colonnes ont également été disposées en désordre, pour montrer que Power BI est utile pour l’analyse de données complexes et déstructurées…

La couleur a aussi été légèrement éclaircie, passant du jaune sombre à l’or pâle. Là encore, le but est de rassurer l’utilisateur et de lui inspirer des sentiments positifs.

Le grand changement de 2020 à aujourd’hui

En 2020, Microsoft a totalement changé le style de ses logos pour moderniser son image de marque. Ainsi, le badge de Power BI a été modifié pour devenir plus minimaliste.

Calme et volumineux, ce nouveau logo ne contient plus de cadre représentant un écran. Seul le graphique en barres de la première version est conservé, et ne contient plus que trois colonnes croissantes. Leurs couleurs vont du jaune pâle au sable sombre.

Cette transformation ajoute davantage de clarté, car l’attention des utilisateurs est immédiatement rivée sur le diagramme. Ce nouveau logo est plus facilement identifiable, et inspire directement la simplicité.

Que symbolise le logo Power BI ?

Chaque élément de ce logo est soigneusement choisi pour véhiculer un message et évoquer des sentiments spécifiques chez les utilisateurs.

La couleur jaune est associée à l’énergie et au dynamisme, reflétant l’expertise et la confiance. La forme géométrique évoque quant à elle la structure et la complexité des données, tout en illustrant la capacité de Power BI à les organiser et à leur donner du sens.

Avec l’apparence du logo Power BI, sa symbolique a également évolué. Les premières versions arboraient des couleurs sobres et une typographie élégante pour refléter le professionnalisme et la fiabilité associés à Microsoft.

À mesure que la plateforme s’étoffait de fonctionnalités et gagnait en popularité, ses concepteurs ont cherché à exprimer l’idée de puissance, d’accessibilité et de modernité à travers le logo.

Lorsque la BI en libre-service est devenue une tendance majeure, le logo a évolué pour refléter cette orientation. Il est devenu plus convivial, afin d’encourager les utilisateurs à explorer et à analyser leurs données d’une manière autonome.

Les différentes itérations ont aussi été influencées par les tendances de design graphique de leur époque. L’objectif était de rendre le logo à la fois intemporel et dans l’air du temps.

Comment apprendre à maîtriser Power BI ?

Vous connaissez désormais tous les secrets du logo de Power BI. Pour aller plus loin, vous pouvez apprendre à maîtriser cette plateforme de business intelligence avec DataScientest !

Notre formation se décompose en deux parties. La première s’adresse aux débutants et permet de découvrir l’analyse de données et la conception de dashboard à l’aide d’outils comme DAX et Power Query.

La seconde partie, destinée aux utilisateurs plus avancés, aborde les subtilités de chaque service et les notions complexes comme les DataFlows et l’actualisation incrémentielle.

En fonction de votre niveau et de vos objectifs, il est possible d’effectuer l’une de ces deux parties ou la totalité du cursus pour acquérir la maîtrise complète de Power BI !

L’ensemble de la formation se complète à distance en seulement 38 heures réparties sur cinq jours. En fin de parcours, vous pourrez passer l’examen officiel Microsoft PL-300 pour obtenir la certification Power BI Data Analyst Associate.

Ce cursus peut être effectué à temps plein ou en temps partiel sur 30 jours, et notre organisme est éligible au CPF pour le financement. Découvrez vite DataScientest pour devenir expert Power BI !

Découvrir la formation Power BI

Vous savez tout sur le logo Power BI. Pour plus d’informations sur le même sujet, découvrez notre dossier complet sur Power BI et notre dossier sur le langage DAX

Définitions

Data Strategist : Quels sont les outils et missions de cet expert ?

Dans cet article, vous découvrirez ce qu’est le métier de Data Strategist. Vous allez pouvoir vous familiariser avec les différentes missions, les compétences indispensables et les outils de ce métier tant recherché ainsi que les atouts que ce rôle représente pour une entreprise et dans votre carrière.

Pour commencer, vous devez savoir qu’un Data Strategist est la personne qui va prendre en charge la gestion et l’analyse des données. Il va ensuite agir auprès des structures afin d’identifier les besoins de son activité principale et par la suite il élaborera un projet de développement, capable d’impacter des domaines aussi variés que le marketing, l’IT ou le business.

Quelles sont les missions d’un Data Strategist ?

  • Exécution de la stratégie avec le Chief Data Officer
  • Proposition de réponse innovantes et créatives dans le domaine de la data
  • Planification et chefferie de projets
  • Accompagnement des clients dans la compréhension de l’impact du Big Data
  • Conception, architecture et développement de solution d’intelligence artificielle
  • Développement des options dans le domaine de la Big Data
  • Analyse de leads 
  • Assistance aux équipes de développement commercial dans les activités d’avant-vente et les appels d’offres

Diagramme de Venn pour le Data Strategist

Les trois cercles présents dans ce diagramme représentent les trois domaines de connaissances les plus importants pour un Data Strategist :

  • Business
  • Communication
  • Data & Technologie

Le Data Strategist travaille principalement sur le côté business de la data. Il devra proposer des idées afin d’améliorer l’expansion de l’entreprise ou son organisation. À l’instar d’un chef de projet, il encadre les équipes fonctionnelles, recueille le besoin, gère les plannings, définit la stratégie technique et commerciale mais dans le domaine spécifique de la Big Data.

Quelles sont les compétences que doit avoir un Data Strategist ?

  • Diplôme d’une école de commerce ou d’ingénieur
  • Expériences significatives en Data Strategy, Data Gouvernance, Data Management
  • Maîtrise des technologies de gouvernance, Master Data Management, Analytics, Intelligence Artificielle, Business Intelligence
  • Aptitude en relation humaines et communication
  • Niveau d’anglais courant
  • Bonne compréhension du Machine Learning
  • Appétence pour l’analyse statistique
  • Esprit d’entreprise
  • Compétences en matière d’organisation

Quels sont les outils utilisés ?

Le Data Strategist utilise principalement Microsoft Power BI, qui est une solution d’analyse de données et un outil incontournable dans ce domaine, permettant d’effectuer les tâches suivantes :

  • La transformation des données
  • La modélisation et visualisation des données
  • La configuration de tableaux de bord, de rapports et applications

Pour permettre la mise en place d’un projet Cloud dans son intégralité, vous aurez besoin de maîtriser AWS qui régit les fonctions suivantes :

  • Conception des architectures résilientes et sécurisées
  • Infrastructure mondiale et fiabilité
  • Réseaux
  • Stockage base de données
  • Présentation du Well Architect Framework et des avantages du cloud

Les atouts de la profession

Les métiers de la data (Data Strategist, Data Scientist, Data Analyst ou Data Engineer) sont en pleine expansion. Peu de profils compétents sont disponibles sur le marché et les entreprises souffrent d’un cruel manque de ressources pour gérer et traiter leurs données.
C’est un domaine dans lequel vous trouverez pleine et entière satisfaction professionnelle, tant sur le plan de la stimulation intellectuelle que sur la montée en compétences constante, où les perspectives d’évolution sont prometteuses.
En complément des points spécifiés en amont, le salaire d’un Data Strategist représente un attrait supplémentaire. Il est évalué selon plusieurs critères :

  • Le niveau d’étude
  • Les compétences acquises
  • Les différentes expériences dans le domaine
  • Le type de structure qui recrute

De manière générale, la rémunération est plus élevée dans le privé que dans le secteur public, dont l’indice n’est pas forcément réévalué annuellement. La fourchette salariale pour la profession se situe entre 34000€ et 58000€ brut.
Vous savez maintenant tout sur le métier de Data Strategist.
Si vous souhaitez vous reconvertir dans ce domaine, n’hésitez pas à découvrir notre formation Power BI et AWS.

Formations

Power BI API : Tutoriel complet sur cette fonctionnalité

Les APIs permettent de connecter Power BI à des sources de données externes. Découvrez tout ce que vous devez savoir sur ces interfaces, et comment maîtriser la plateforme de Microsoft.

Il existe plusieurs façons d’assembler les données pour les rapports Power BI. Outre les fichiers Excel et les bases de données sur site ou sur le cloud, les APIs sont de plus en plus utilisées.
De nombreuses organisations fournissent des données par le biais d’APIs, dont les agences gouvernementales, les entreprises de médias, les fournisseurs de services logiciels ou même les ONG.
Ces outils peuvent aussi être utilisés en interne par les entreprises souhaitant intégrer des données entre de multiples systèmes. C’est l’un des cas d’usage les plus courants de Power BI et autres plateformes de reporting.
Même si la source de données principale d’un rapport est généralement interne, comme une Data Warehouse, il est possible d’enrichir les données existantes grâce à une API.
Il peut s’agir par exemple de données économiques et démographiques de la Banque Mondiale, des données des réseaux sociaux, des taux d’échange actuels ou même d’informations sur Wikipedia. Il existe de nombreuses APIs permettant d’obtenir de telles données.

Qu’est-ce que Power BI ?

Power BI est la plateforme de Business Intelligence de Microsoft. Cet outil self-service permet à tous les employés d’une entreprise d’analyser et de visualiser les données.
Il s’agit d’une suite logicielle regroupant plusieurs composants pour la collecte, l’analyse et la visualisation de données, le reporting et la création de tableaux de bord.
Les avantages de Power BI sont une interface intuitive, une accessibilité sur PC, mobile et cloud, et une connectivité avec de nombreux logiciels et sources de données.

Qu’est-ce qu’une API ?

Le terme API est l’acronyme de « Application Programming Interface ». Il existe une large diversité d’APIs dans le domaine de l’informatique.
Différentes technologies permettent de délivrer les APIs, comme REST et SOAP. Chacun a ses propres mécanismes et capacités, et peut retourner les données dans différents formats comme JSON ou XML.
Heureusement, chaque API s’accompagne d’une documentation détaillant son fonctionnement. Elle indique notamment les définitions, les valeurs de requêtes autorisées, les limitations, des exemples d’usage et les formats de données.
Les APIs gratuites et publiques ne requièrent aucune authentification, mais les APIs privées et commerciales peuvent exiger une clé ou un mot de passe.
Les APIs de données web comme celle de Wikipedia permettent d’effectuer une requête en entrant une simple adresse URL dans un navigateur web.

Qu’est-ce qu’une API REST ?

Une API REST est un style d’architecture logicielle conçue pour guider le développement et le design de l’architecture du World Wide Web. Elle définit un ensemble de contraintes pour la façon dont l’architecture système doit se comporter.
Les APIs REST offrent une façon flexible et légère d’intégrer les applications. Elles permettent d’effectuer des recherches en envoyant des requêtes à un service, et renvoient des résultats en provenance de celui-ci.
Les éléments composant l’API Rest sont les headers indiquant le mode d’authentification et les types de contenu, la méthode d’appel telle que POST et GET, le endpoint sous forme d’URL et les données textuelles au format JSON.
Pour accéder à la REST API de Power BI, il est nécessaire de demander au préalable un token avec lequel vous pourrez appeler l’API et exécuter les fonctions.

À quoi sert la REST API de Power BI ?

La REST API de Power PI délivre des endpoints de service pour l’intégration, l’administration, la gouvernance ou les ressources utilisateurs. Elle permet d’organiser le contenu Power BI, d’exécuter des opérations administratives ou encore d’intégrer du contenu en provenance de Power BI.

Maîtriser la REST API de Power BI

Son avantage est de permettre de construire des applications personnalisées délivrant les données sur un tableau de bord Power BI à l’aide d’un accès programmatique aux composants du tableau de bord : datasets, tableaux, lignes…
Elle permet de créer, d’obtenir ou de modifier des ensembles de données, des tableaux, des couloirs, des groupes, ou encore des tableaux de bord. Voici comment procéder pour établir une connexion entre Power BI et une source de données via la REST API.
La première étape est d’enregistrer une application à partir du Portail Développeur de Power BI. Vous devez ensuite conférer à l’utilisateur l’autorisation d’accéder à l’application, et générer un token d’accès à l’aide de la méthode POST.
Par la suite, vous pouvez utiliser la REST API de Power BI pour assembler les données dont vous avez besoin. Il peut s’agir par exemple d’une liste de rapports ou d’ensembles de données en provenance de votre espace de travail personnel.

Qu’est-ce que la DAX REST API de Power BI ?

Depuis le mois d’août 2021, la nouvelle API REST de Power BI permet d’effectuer des requêtes de datasets en utilisant le langage DAX. Cette API REST DAX évite les dépendances aux librairies client Analysis Services, et ne requiert pas de connexion aux endpoints XMLA.
Il est possible dans presque n’importe quel environnement de développement moderne et sur n’importe quelle plateforme dont les applications no-code Power Apps, les langages basés JavaScript ou le langage Python. Toute technologie permettant l’authentification avec Azure Active Directory et la construction d’une requête web est compatible.

Qu’est-ce que la Client API de Power BI ?

L’API Client de Power BI est une librairie client side permettant de contrôler programmatiquement le contenu intégré Power BI en utilisant JavaScript ou TypeScript.
Cette API permet la communication entre les éléments de Power BI tels que les rapports et les tableaux de bord, et le code d’application. Ainsi, vous pouvez concevoir une expérience utilisateur selon votre propre design.

Comment connecter Power BI à une API ?

La connexion entre Power BI est une API nécessite d’utiliser un connecteur de source de données web. On entre ensuite le endpoint de l’API et ses paramètres en guise d’URL.
Après avoir fourni les détails d’authentification requis par l’API, il ne reste qu’à formater les résultats de la requête dans un format de tableau pouvant être intégré au modèle Power BI.
Par défaut, Power BI essayera automatiquement de convertir les résultats JSON vers un format de tableau. Le format XML requiert un peu plus d’efforts, et les étapes spécifiques peuvent varier.

Comment apprendre à manier Power BI ?

Une connexion API apporte de nombreux avantages pour le reporting sur Power BI. Elle peut notamment permettre d’enrichir les données grâce à des sources externes, ou fournir une façon plus flexible de connecter ses données au cloud. Il existe de nombreuses APIs disponibles gratuitement sur le web.
Toutefois, pour maîtriser Power BI et toutes ses fonctionnalités, vous pouvez choisir DataScientest. Nous proposons une formation Power BI permettant à un débutant d’acquérir la maîtrise complète de l’outil en seulement cinq jours.
Notre cursus s’effectue intégralement à distance, via internet. En tant que Microsoft Learning Partner, DataScientest vous permet d’obtenir la certification PL-300 Power BI Data Analyst Associate à la fin du parcours.
Pour le financement, notre organisme est reconnu par l’Etat est éligible au Compte Personnel de Formation. N’attendez plus, et découvrez DataScientest !

Découvrir la formation Power BI

Vous savez tout sur Power BI et les APIs. Pour plus d’informations sur le même sujet, découvrez notre dossier complet sur Power BI et notre dossier sur la Business Intelligence.

Formations

Formation Power BI : les différents types de cours

Microsoft Power BI est une famille d’outils de Business Intelligence. À partir des données d’une entreprise, il permet de générer des rapports et donc des informations d’aide à la décision.

Le terme « famille d’outils » est ici employé, car les éléments qui composent Power BI sont nombreux. Les principaux sont :

          Power Bi Desktop: une application de bureau qui peut être téléchargée gratuitement sur PC. C’est l’outil principal pour le traitement des données et la création de rapports.

          Power bi Service : l’environnement Cloud où les rapports créés avec Power Bi Desktop sont publiés, analysés et partagés. On s’y connecte via un compte Microsoft.

          Power bi Mobile : les rapports peuvent également être analysés via une application pour appareils mobiles (Smartphones et tablettes).

Les utilisateurs de Power BI comprennent à quel point cet outil est incontournable. C’est la raison pour laquelle des cours spécifiques à destination de spécialistes des données et des TIC sont proposés par différents établissements et centres de formation.

Power BI pour les développeurs

Bien que Power BI soit un logiciel gratuit, en tant que service (SaaS), il permet d’analyser des données et de partager des connaissances. Les tableaux de bord Power BI offrent une vue à 360 degrés des métriques les plus importantes en un seul endroit, avec des mises à jour en temps réel et une accessibilité sur tous les appareils.

Une formation Power BI à destination des développeurs consiste à apprendre à utiliser l’outil pour développer des solutions logicielles personnalisées pour les plateformes Power BI et Azure. Au terme de la formation, les étudiants auront acquis les compétences suivantes :

          Configurer des tableaux de bord en temps réel

          Créer des visualisations personnalisées

          Intégrer des analyses riches dans des applications existantes

          Intégrer des rapports interactifs et visuels dans des applications existantes

          Accéder aux données depuis une application

Création de tableaux de bord à l’aide de Microsoft Power BI

Cette formation couvre à la fois Power BI sur le web et Power BI Desktop. Elle s’adresse généralement aux chefs d’entreprise, aux développeurs, aux analystes, aux chefs de projet et aux chefs d’équipe. L’objectif est que les étudiants acquièrent une compréhension de base des sujets ci-dessous, ainsi qu’une capacité à utiliser et à mettre en œuvre les concepts appris.

          Power BI

          Power BI Desktop

          Utilisation de feuilles de calcul CSV, TXT et Excel

          Connexion aux bases de données

          Fusionner, regrouper, résumer et calculer des données

          Création de rapports

Conception du tableau de bord Power BI

Power BI est l’un des outils de visualisation de données les plus populaires et un outil de Business Intelligence. Il propose une collection de connecteurs de bases de données, d’applications et de services logiciels qui sont utilisés pour obtenir des informations de différentes sources de données, les transformer et produire des rapports. Il permet également de les publier pour pouvoir y accéder depuis des appareils mobiles. Mais, cela nécessite la conception de tableaux de bord.

Une formation axée sur la création de tableaux de bord s’adresse aux chefs d’entreprise, aux analystes commerciaux, aux Data Analysts, aux développeurs et aux chefs d’équipe qui souhaitent concevoir un tableau de bord Power BI parfait. À l’issue de cette formation, les participants pourront :

          Concevoir des tableaux de bord beaux et efficaces en suivant les règles critiques

          Choisir les bons graphiques en fonction du type de données à afficher

Data Analytics Process, solutions Cloud et solutions Power BI

Cette formation consiste à avoir une prise en main des solutions Cloud disponibles, des processus d’analyse de données nécessaires pour travailler avec des données dans le Cloud et des outils Power BI pour analyser les données.

L’objectif de la formation est d’apporter aux participants la capacité de :

          Installer et configurer Power BI

          Évaluer les différentes solutions de données offertes par les fournisseurs de cloud tels qu’Azure

          Acquérir une compréhension des différentes structures, approches de modélisation et conceptions de Data Warehouses utilisées pour stocker, gérer et accéder au Big Data.

          Appliquer des outils et des techniques pour nettoyer les données en vue de l’analyse.

          Construire des solutions de reporting et d’analyse basées sur des données sur site et dans le Cloud.

          Intégrer des solutions d’analyse de données à un Data Warehouse

          Atténuer les risques de sécurité des données et assurer la confidentialité des données

Excel vers Power BI

Exporter un fichier Excel vers Power BI est une connaissance essentielle aux Data Analysts qui souhaitent apprendre des techniques pour préparer des données dans Excel, puis les visualiser dans Power BI. Ainsi, ils pourront :

          Comprendre les principes de l’analyse des données, les objectifs de l’analyse des données et les approches de l’analyse des données

          Utiliser les formules DAX dans Power BI pour des calculs complexes

          Mettre en place des visualisations et des graphiques pour des cas d’analyse particuliers

BeautifulSoup
Définitions

Beautiful Soup : tout savoir sur la bibliothèque Python de Data Scraping

Le web est une véritable mine de données informatiques. Ces données peuvent être exploitées, analysées pour une infinité de cas d’usage et d’applications. On peut les utiliser pour nourrir des systèmes de Machine Learning, d’intelligence artificielle, ou tout simplement pour mettre en lumière des tendances et des phénomènes.

S’il est possible de collecter ces données manuellement afin de constituer de vastes datasets, cette tâche représente un travail de titan. Afin de l’automatiser, on utilise le Web Scraping.

Qu’est-ce que le Web Scraping ?

Le Web Scraping est un processus qui consiste à assembler des informations en provenance d’internet, à l’aide de divers outils et frameworks. Cette définition est très large, et même le fait de copier / coller les paroles d’une chanson peut être considéré comme une forme de Web Scraping.

Toutefois, le terme de Web Scraping désigne généralement un processus impliquant l’automatisation. Les volumes massifs de données sont collectés automatiquement, afin de constituer de vastes datasets.

Certains sites web s’opposent à la collecte de leurs données par des scrapers automatiques. En règle générale, le scraping à des fins éducatives est plus toléré que pour un usage commercial. Il est important de consulter les conditions d’utilisation d’un site avant d’initier un projet.

À quoi sert le Web Scraping ?

Le Web Scraping permet d’agréger des informations plus rapidement qu’avec une collecte manuelle. Il n’est plus nécessaire de passer de longues heures à cliquer, à dérouler l’écran ou à rechercher les données.

Cette méthode se révèle particulièrement utile pour amasser de très larges volumes de données en provenance de sites web régulièrement mis à jour avec du nouveau contenu. Le scraping manuel est une tâche chronophage et rébarbative.

À l’échelle individuelle, le Web Scraping peut se révéler utile pour automatiser certaines tâches. Par exemple, un demandeur d’emploi peut utiliser Python pour automatiser ses recherches d’offres. Quelques lignes de code permettent d’enregistrer automatiquement les nouvelles annonces publiées sur des plateformes comme Indeed ou Monster, afin de ne plus avoir à visiter ces sites web quotidiennement.

web-scraping-beautiful-soup

Le Web Scraping peut aussi être utilisé pour surveiller des changements de prix, comparer des prix, ou surveiller la concurrence en collectant des sites web en provenance de leurs sites web. Les possibilités sont nombreuses et diverses.

Toutefois, cette méthode se révèle surtout pertinente pour les projets Big Data nécessitant d’immenses volumes de données. Par exemple, l’entreprise ClearView AI a utilisé le Web Scraping sur les réseaux sociaux afin de constituer une immense base de données de photos de profils pour son logiciel de reconnaissance faciale.

Le Web Scraping est presque aussi vieux qu’internet. Alors que le World Wide Web fut lancé en 1989, le World Wide Web Wanderer a été créé quatre ans plus tard. Il s’agit du premier robot web créé par Matthew Gray du MIT. Son objectif était de mesurer la taille du WWW.

Les défis du Web Scraping

Depuis sa création, internet a beaucoup évolué. On y trouve une large variété de types et formats de données, et le web scraping comporte donc plusieurs difficultés.

Le premier défi à relever est celui de la variété. Chaque site web est différent et unique, et nécessite donc un traitement spécifique pour l’extraction d’informations pertinentes.

En outre, les sites web évoluent constamment. Un script de Web Scraping peut donc fonctionner parfaitement la première fois, mais se heurter ensuite à des dysfonctionnements en cas de mise à jour.

Dès que la structure d’un site change, le scraper peut ne plus être capable de naviguer la ” sitemap ” correctement ou de trouver des informations pertinentes. Heureusement, la plupart des changements apportés aux sites web sont minimes et incrémentaux, et un scraper peut donc être mis à jour avec de simples ajustements.

Néanmoins, face à la nature dynamique d’internet, les scrapers nécessitent généralement une maintenance constante. Il est possible d’utiliser l’intégration continue pour lancer périodiquement des tests de scraping et s’assurer que les scripts fonctionnent correctement.

Les APIs en guise d’alternative au Web Scraping

Certains sites web proposent des APIs (interface de programmation d’application) permettant d’accéder à leurs données de manière prédéfinie. Ces interfaces permettent d’accéder aux données directement en utilisant des formats comme JSON et XML, plutôt que de s’en remettre au parsing de HTML.

L’utilisation d’une API est en général un processus plus stable que l’agrégation de données via le Web Scraping. Pour cause, les développeurs créent des APIs conçues pour être consommées par des programmes plutôt que par des yeux humains.

API-beautiful-soup

La présentation front-end d’une site web peut souvent changer, mais un tel changement dans le design d’un site web n’affecte pas la structure de son API. Cette structure est généralement plutôt permanente, ce qui en fait une source plus fiable de données.

Néanmoins, les APIs aussi peuvent changer. Les défis liés à la variété et à la durabilité s’appliquent donc aussi bien aux APIs qu’aux sites web. Il est également plus difficile d’inspecter la structure d’une API par soi-même si la documentation fournie n’est pas suffisamment complète.

Qu’est-ce que Beautiful Soup ?

Beautiful Soup est une bibliothèque Python utilisée pour le Web Scraping. Elle permet d’extraire des données en provenance de fichiers XML ou HTML. Cette bibliothèque crée un arbre de parsing à partir du code source de la page, pouvant être utilisé pour extraire les données de manière hiérarchique et lisible.

À l’origine, Beautiful Soup fut introduite en mai 2006 par Leonard Richardson qui continue à contribuer au projet. En outre, le projet est soutenu par Tidelift et son outil de maintenance open-source proposé par abonnement payant.

En plus de ses hautes performances, Beautiful Soup apporte plusieurs avantages. Cet outil permet de parcourir les pages de la même manière qu’un navigateur, et enjolive le code source.

Comment apprendre à utiliser Beautiful Soup et Python ?

Afin d’apprendre à utiliser Beautiful Soup, vous pouvez choisir DataScientest. Leur formation Data Analyst commence avec un module dédié à la programmation en Python, et comporte un module dédié à l’extraction de données textes et au Web Scraping.

Les autres modules de ce cursus couvrent la Dataviz, le Machine Learning, les bases de données Big Data et la Business Intelligence. À l’issue du programme, vous aurez toutes les compétences requises pour exercer le métier de Data Analyst.

Toutes nos formations adoptent une approche Blended Learning combinant coaching individuel sur notre plateforme en ligne et Masterclass. Le programme peut être complété en Formation Continue ou en mode BootCamp intensif.

À la fin du cursus, vous recevrez un certificat délivré par l’Université Paris la Sorbonne dans le cadre de notre partenariat. Parmi les alumnis, 80% ont trouvé un emploi immédiatement après la formation.

Nos programmes sont éligibles au Compte Personnel de Formation pour le financement. N’attendez plus et découvrez la formation Data Analyst de DataScientest !

Vous savez tout sur Beautiful Soup. Découvrez notre dossier complet sur le langage Python, et notre dossier sur le métier de Data Analyst.

power-bi-logo
Dossier

Les différents cours pouvant être suivis durant une formation Power BI

Microsoft Power BI est une famille d’outils de Business Intelligence. À partir des données d’une entreprise, il permet de générer des rapports et donc des informations d’aide à la décision.

Le terme « famille d’outils » est ici employé, car les éléments qui composent Power BI sont nombreux. Les principaux sont :

          Power BI Desktop: une application de bureau qui peut être téléchargée gratuitement sur PC. C’est l’outil principal pour le traitement des données et la création de rapports.

          Power BI Service : l’environnement Cloud où les rapports créés avec Power BI Desktop sont publiés, analysés et partagés. On s’y connecte via un compte Microsoft.

          Power BI Mobile : les rapports peuvent également être analysés via une application pour appareils mobiles (Smartphones et tablettes).

Les utilisateurs de Power BI comprennent à quel point cet outil est incontournable. C’est la raison pour laquelle des cours spécifiques à destination de spécialistes des données et des TIC sont proposés par différents établissements et centres de formation.

Power BI pour les développeurs

Bien que Power BI soit un logiciel gratuit, en tant que service (SaaS), il permet d’analyser des données et de partager des connaissances. Les tableaux de bord Power BI offrent une vue à 360 degrés des métriques les plus importantes en un seul endroit, avec des mises à jour en temps réel et une accessibilité sur tous les appareils.

Développeurs heureux devant un ordinateur

Une formation Power BI à destination des développeurs consiste à apprendre à utiliser l’outil pour développer des solutions logicielles personnalisées pour les plateformes Power BI et Azure. Au terme de la formation, les étudiants auront acquis les compétences suivantes :

          Configurer des tableaux de bord en temps réel

          Créer des visualisations personnalisées

          Intégrer des analyses riches dans des applications existantes

          Intégrer des rapports interactifs et visuels dans des applications existantes

          Accéder aux données depuis une application

Création de tableaux de bord à l’aide de Microsoft Power BI

Cette formation couvre à la fois Power BI sur le web et Power BI Desktop. Elle s’adresse généralement aux chefs d’entreprise, aux développeurs, aux analystes, aux chefs de projet et aux chefs d’équipe. L’objectif est que les étudiants acquièrent une compréhension de base des sujets ci-dessous, ainsi qu’une capacité à utiliser et à mettre en œuvre les concepts appris.

          Power BI

          Power BI Desktop

          Utilisation de feuilles de calcul CSV, TXT et Excel

          Connexion aux bases de données

          Fusionner, regrouper, résumer et calculer des données

          Création de rapports

Conception du tableau de bord Power BI

interface-power-bi

Power BI est l’un des outils de visualisation de données les plus populaires et un outil de Business Intelligence. Il propose une collection de connecteurs de bases de données, d’applications et de services logiciels qui sont utilisés pour obtenir des informations de différentes sources de données, les transformer et produire des rapports. Il permet également de les publier pour pouvoir y accéder depuis des appareils mobiles. Mais, cela nécessite la conception de tableaux de bord.

Une formation axée sur la création de tableaux de bord s’adresse aux chefs d’entreprise, aux analystes commerciaux, aux Data Analysts, aux développeurs et aux chefs d’équipe qui souhaitent concevoir un tableau de bord Power BI parfait. À l’issue de cette formation, les participants pourront :

          Concevoir des tableaux de bord beaux et efficaces en suivant les règles critiques

          Choisir les bons graphiques en fonction du type de données à afficher

Data Analytics Process, solutions Cloud et solutions Power BI

Cette formation consiste à avoir une prise en main des solutions Cloud disponibles, des processus d’analyse de données nécessaires pour travailler avec des données dans le Cloud et des outils Power BI pour analyser les données.

L’objectif de la formation est d’apporter aux participants la capacité de :

          Installer et configurer Power BI

          Évaluer les différentes solutions de données offertes par les fournisseurs de cloud tels qu’Azure

          Acquérir une compréhension des différentes structures, approches de modélisation et conceptions de Data Warehouses utilisées pour stocker, gérer et accéder au Big Data.

          Appliquer des outils et des techniques pour nettoyer les données en vue de l’analyse.

          Construire des solutions de reporting et d’analyse basées sur des données sur site et dans le Cloud.

          Intégrer des solutions d’analyse de données à un Data Warehouse

          Atténuer les risques de sécurité des données et assurer la confidentialité des données

Excel vers Power BI

Exporter un fichier Excel vers Power BI est une connaissance essentielle aux Data Analysts qui souhaitent apprendre des techniques pour préparer des données dans Excel, puis les visualiser dans Power BI. Ainsi, ils pourront :

          Comprendre les principes de l’analyse des données, les objectifs de l’analyse des données et les approches de l’analyse des données

          Utiliser les formules DAX dans Power BI pour des calculs complexes

          Mettre en place des visualisations et des graphiques pour des cas d’analyse particuliers